| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rabbidv | Unicode version | ||
| Description: Equivalent wff's yield equal restricted class abstractions (deduction form). (Contributed by NM, 10-Feb-1995.) |
| Ref | Expression |
|---|---|
| rabbidv.1 |
|
| Ref | Expression |
|---|---|
| rabbidv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabbidv.1 |
. . 3
| |
| 2 | 1 | adantr 276 |
. 2
|
| 3 | 2 | rabbidva 2759 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-11 1528 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-ral 2488 df-rab 2492 |
| This theorem is referenced by: rabeqbidv 2766 difeq2 3284 seex 4380 mptiniseg 5174 elovmporab 6136 supeq1 7070 supeq2 7073 supeq3 7074 cardcl 7270 isnumi 7271 cardval3ex 7274 carden2bex 7279 genpdflem 7602 genipv 7604 genpelxp 7606 addcomprg 7673 mulcomprg 7675 uzval 9632 ixxval 10000 fzval 10114 hashinfom 10904 hashennn 10906 shftfn 11054 bitsfval 12172 gcdval 12199 lcmval 12304 isprm 12350 odzval 12483 pceulem 12536 pceu 12537 pcval 12538 pczpre 12539 pcdiv 12544 lspval 14070 istopon 14403 toponsspwpwg 14412 clsval 14501 neival 14533 cnpval 14588 blvalps 14778 blval 14779 limccl 15049 ellimc3apf 15050 eldvap 15072 sgmval 15373 |
| Copyright terms: Public domain | W3C validator |