| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rabbidv | Unicode version | ||
| Description: Equivalent wff's yield equal restricted class abstractions (deduction form). (Contributed by NM, 10-Feb-1995.) |
| Ref | Expression |
|---|---|
| rabbidv.1 |
|
| Ref | Expression |
|---|---|
| rabbidv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabbidv.1 |
. . 3
| |
| 2 | 1 | adantr 276 |
. 2
|
| 3 | 2 | rabbidva 2761 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-11 1530 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-ral 2490 df-rab 2494 |
| This theorem is referenced by: rabeqbidv 2768 difeq2 3289 seex 4390 mptiniseg 5186 elovmporab 6159 supeq1 7103 supeq2 7106 supeq3 7107 cardcl 7303 isnumi 7304 cardval3ex 7307 carden2bex 7312 genpdflem 7640 genipv 7642 genpelxp 7644 addcomprg 7711 mulcomprg 7713 uzval 9670 ixxval 10038 fzval 10152 hashinfom 10945 hashennn 10947 shftfn 11210 bitsfval 12328 gcdval 12355 lcmval 12460 isprm 12506 odzval 12639 pceulem 12692 pceu 12693 pcval 12694 pczpre 12695 pcdiv 12700 lspval 14227 istopon 14560 toponsspwpwg 14569 clsval 14658 neival 14690 cnpval 14745 blvalps 14935 blval 14936 limccl 15206 ellimc3apf 15207 eldvap 15229 sgmval 15530 |
| Copyright terms: Public domain | W3C validator |