| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rabbidv | Unicode version | ||
| Description: Equivalent wff's yield equal restricted class abstractions (deduction form). (Contributed by NM, 10-Feb-1995.) |
| Ref | Expression |
|---|---|
| rabbidv.1 |
|
| Ref | Expression |
|---|---|
| rabbidv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabbidv.1 |
. . 3
| |
| 2 | 1 | adantr 276 |
. 2
|
| 3 | 2 | rabbidva 2759 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-11 1528 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-ral 2488 df-rab 2492 |
| This theorem is referenced by: rabeqbidv 2766 difeq2 3284 seex 4381 mptiniseg 5176 elovmporab 6145 supeq1 7087 supeq2 7090 supeq3 7091 cardcl 7287 isnumi 7288 cardval3ex 7291 carden2bex 7296 genpdflem 7619 genipv 7621 genpelxp 7623 addcomprg 7690 mulcomprg 7692 uzval 9649 ixxval 10017 fzval 10131 hashinfom 10921 hashennn 10923 shftfn 11077 bitsfval 12195 gcdval 12222 lcmval 12327 isprm 12373 odzval 12506 pceulem 12559 pceu 12560 pcval 12561 pczpre 12562 pcdiv 12567 lspval 14094 istopon 14427 toponsspwpwg 14436 clsval 14525 neival 14557 cnpval 14612 blvalps 14802 blval 14803 limccl 15073 ellimc3apf 15074 eldvap 15096 sgmval 15397 |
| Copyright terms: Public domain | W3C validator |