![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > rabbidv | Unicode version |
Description: Equivalent wff's yield equal restricted class abstractions (deduction form). (Contributed by NM, 10-Feb-1995.) |
Ref | Expression |
---|---|
rabbidv.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
rabbidv |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rabbidv.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | adantr 276 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | 2 | rabbidva 2748 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-11 1517 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-ral 2477 df-rab 2481 |
This theorem is referenced by: rabeqbidv 2755 difeq2 3272 seex 4367 mptiniseg 5161 elovmporab 6120 supeq1 7047 supeq2 7050 supeq3 7051 cardcl 7243 isnumi 7244 cardval3ex 7247 carden2bex 7251 genpdflem 7569 genipv 7571 genpelxp 7573 addcomprg 7640 mulcomprg 7642 uzval 9597 ixxval 9965 fzval 10079 hashinfom 10852 hashennn 10854 shftfn 10971 gcdval 12099 lcmval 12204 isprm 12250 odzval 12382 pceulem 12435 pceu 12436 pcval 12437 pczpre 12438 pcdiv 12443 lspval 13889 istopon 14192 toponsspwpwg 14201 clsval 14290 neival 14322 cnpval 14377 blvalps 14567 blval 14568 limccl 14838 ellimc3apf 14839 eldvap 14861 |
Copyright terms: Public domain | W3C validator |