| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rabbidv | Unicode version | ||
| Description: Equivalent wff's yield equal restricted class abstractions (deduction form). (Contributed by NM, 10-Feb-1995.) |
| Ref | Expression |
|---|---|
| rabbidv.1 |
|
| Ref | Expression |
|---|---|
| rabbidv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabbidv.1 |
. . 3
| |
| 2 | 1 | adantr 276 |
. 2
|
| 3 | 2 | rabbidva 2787 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-11 1552 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-ral 2513 df-rab 2517 |
| This theorem is referenced by: rabeqbidv 2794 difeq2 3316 seex 4425 mptiniseg 5222 elovmporab 6204 supeq1 7149 supeq2 7152 supeq3 7153 cardcl 7349 isnumi 7350 cardval3ex 7353 carden2bex 7358 genpdflem 7690 genipv 7692 genpelxp 7694 addcomprg 7761 mulcomprg 7763 uzval 9720 ixxval 10088 fzval 10202 hashinfom 10995 hashennn 10997 shftfn 11330 bitsfval 12448 gcdval 12475 lcmval 12580 isprm 12626 odzval 12759 pceulem 12812 pceu 12813 pcval 12814 pczpre 12815 pcdiv 12820 lspval 14348 istopon 14681 toponsspwpwg 14690 clsval 14779 neival 14811 cnpval 14866 blvalps 15056 blval 15057 limccl 15327 ellimc3apf 15328 eldvap 15350 sgmval 15651 |
| Copyright terms: Public domain | W3C validator |