| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rabeqbidv | Unicode version | ||
| Description: Equality of restricted class abstractions. (Contributed by Jeff Madsen, 1-Dec-2009.) |
| Ref | Expression |
|---|---|
| rabeqbidv.1 |
|
| rabeqbidv.2 |
|
| Ref | Expression |
|---|---|
| rabeqbidv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabeqbidv.1 |
. . 3
| |
| 2 | rabeq 2755 |
. . 3
| |
| 3 | 1, 2 | syl 14 |
. 2
|
| 4 | rabeqbidv.2 |
. . 3
| |
| 5 | 4 | rabbidv 2752 |
. 2
|
| 6 | 3, 5 | eqtrd 2229 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rab 2484 |
| This theorem is referenced by: elfvmptrab1 5659 elovmporab1w 6128 mpoxopoveq 6307 supeq123d 7066 phival 12408 dfphi2 12415 gsumress 13099 ismhm 13165 mhmex 13166 issubm 13176 issubg 13381 subgex 13384 isnsg 13410 dfrhm2 13788 isrim0 13795 issubrng 13833 issubrg 13855 rrgval 13896 lsssetm 13990 mplvalcoe 14324 cldval 14443 neifval 14484 cnfval 14538 cnpfval 14539 cnprcl2k 14550 hmeofvalg 14647 ispsmet 14667 ismet 14688 isxmet 14689 blfvalps 14729 cncfval 14916 |
| Copyright terms: Public domain | W3C validator |