ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rabeqbidv Unicode version

Theorem rabeqbidv 2614
Description: Equality of restricted class abstractions. (Contributed by Jeff Madsen, 1-Dec-2009.)
Hypotheses
Ref Expression
rabeqbidv.1  |-  ( ph  ->  A  =  B )
rabeqbidv.2  |-  ( ph  ->  ( ps  <->  ch )
)
Assertion
Ref Expression
rabeqbidv  |-  ( ph  ->  { x  e.  A  |  ps }  =  {
x  e.  B  |  ch } )
Distinct variable groups:    x, A    x, B    ph, x
Allowed substitution hints:    ps( x)    ch( x)

Proof of Theorem rabeqbidv
StepHypRef Expression
1 rabeqbidv.1 . . 3  |-  ( ph  ->  A  =  B )
2 rabeq 2611 . . 3  |-  ( A  =  B  ->  { x  e.  A  |  ps }  =  { x  e.  B  |  ps } )
31, 2syl 14 . 2  |-  ( ph  ->  { x  e.  A  |  ps }  =  {
x  e.  B  |  ps } )
4 rabeqbidv.2 . . 3  |-  ( ph  ->  ( ps  <->  ch )
)
54rabbidv 2608 . 2  |-  ( ph  ->  { x  e.  B  |  ps }  =  {
x  e.  B  |  ch } )
63, 5eqtrd 2120 1  |-  ( ph  ->  { x  e.  A  |  ps }  =  {
x  e.  B  |  ch } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 103    = wceq 1289   {crab 2363
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070
This theorem depends on definitions:  df-bi 115  df-tru 1292  df-nf 1395  df-sb 1693  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ral 2364  df-rab 2368
This theorem is referenced by:  mpt2xopoveq  5997  supeq123d  6676  phival  11454  dfphi2  11461  cncfval  11511
  Copyright terms: Public domain W3C validator