Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rabeqbidv | Unicode version |
Description: Equality of restricted class abstractions. (Contributed by Jeff Madsen, 1-Dec-2009.) |
Ref | Expression |
---|---|
rabeqbidv.1 | |
rabeqbidv.2 |
Ref | Expression |
---|---|
rabeqbidv |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rabeqbidv.1 | . . 3 | |
2 | rabeq 2727 | . . 3 | |
3 | 1, 2 | syl 14 | . 2 |
4 | rabeqbidv.2 | . . 3 | |
5 | 4 | rabbidv 2724 | . 2 |
6 | 3, 5 | eqtrd 2208 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 105 wceq 1353 crab 2457 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ral 2458 df-rab 2462 |
This theorem is referenced by: elfvmptrab1 5602 mpoxopoveq 6231 supeq123d 6980 phival 12180 dfphi2 12187 ismhm 12725 issubm 12735 cldval 13179 neifval 13220 cnfval 13274 cnpfval 13275 cnprcl2k 13286 hmeofvalg 13383 ispsmet 13403 ismet 13424 isxmet 13425 blfvalps 13465 cncfval 13639 |
Copyright terms: Public domain | W3C validator |