ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rabeqbidv Unicode version

Theorem rabeqbidv 2725
Description: Equality of restricted class abstractions. (Contributed by Jeff Madsen, 1-Dec-2009.)
Hypotheses
Ref Expression
rabeqbidv.1  |-  ( ph  ->  A  =  B )
rabeqbidv.2  |-  ( ph  ->  ( ps  <->  ch )
)
Assertion
Ref Expression
rabeqbidv  |-  ( ph  ->  { x  e.  A  |  ps }  =  {
x  e.  B  |  ch } )
Distinct variable groups:    x, A    x, B    ph, x
Allowed substitution hints:    ps( x)    ch( x)

Proof of Theorem rabeqbidv
StepHypRef Expression
1 rabeqbidv.1 . . 3  |-  ( ph  ->  A  =  B )
2 rabeq 2722 . . 3  |-  ( A  =  B  ->  { x  e.  A  |  ps }  =  { x  e.  B  |  ps } )
31, 2syl 14 . 2  |-  ( ph  ->  { x  e.  A  |  ps }  =  {
x  e.  B  |  ps } )
4 rabeqbidv.2 . . 3  |-  ( ph  ->  ( ps  <->  ch )
)
54rabbidv 2719 . 2  |-  ( ph  ->  { x  e.  B  |  ps }  =  {
x  e.  B  |  ch } )
63, 5eqtrd 2203 1  |-  ( ph  ->  { x  e.  A  |  ps }  =  {
x  e.  B  |  ch } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    = wceq 1348   {crab 2452
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rab 2457
This theorem is referenced by:  elfvmptrab1  5590  mpoxopoveq  6219  supeq123d  6968  phival  12167  dfphi2  12174  ismhm  12685  issubm  12695  cldval  12893  neifval  12934  cnfval  12988  cnpfval  12989  cnprcl2k  13000  hmeofvalg  13097  ispsmet  13117  ismet  13138  isxmet  13139  blfvalps  13179  cncfval  13353
  Copyright terms: Public domain W3C validator