| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rabeqbidv | Unicode version | ||
| Description: Equality of restricted class abstractions. (Contributed by Jeff Madsen, 1-Dec-2009.) |
| Ref | Expression |
|---|---|
| rabeqbidv.1 |
|
| rabeqbidv.2 |
|
| Ref | Expression |
|---|---|
| rabeqbidv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabeqbidv.1 |
. . 3
| |
| 2 | rabeq 2755 |
. . 3
| |
| 3 | 1, 2 | syl 14 |
. 2
|
| 4 | rabeqbidv.2 |
. . 3
| |
| 5 | 4 | rabbidv 2752 |
. 2
|
| 6 | 3, 5 | eqtrd 2229 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rab 2484 |
| This theorem is referenced by: elfvmptrab1 5659 elovmporab1w 6128 mpoxopoveq 6307 supeq123d 7066 phival 12406 dfphi2 12413 gsumress 13097 ismhm 13163 mhmex 13164 issubm 13174 issubg 13379 subgex 13382 isnsg 13408 dfrhm2 13786 isrim0 13793 issubrng 13831 issubrg 13853 rrgval 13894 lsssetm 13988 cldval 14419 neifval 14460 cnfval 14514 cnpfval 14515 cnprcl2k 14526 hmeofvalg 14623 ispsmet 14643 ismet 14664 isxmet 14665 blfvalps 14705 cncfval 14892 |
| Copyright terms: Public domain | W3C validator |