Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rabeqbidv | Unicode version |
Description: Equality of restricted class abstractions. (Contributed by Jeff Madsen, 1-Dec-2009.) |
Ref | Expression |
---|---|
rabeqbidv.1 | |
rabeqbidv.2 |
Ref | Expression |
---|---|
rabeqbidv |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rabeqbidv.1 | . . 3 | |
2 | rabeq 2718 | . . 3 | |
3 | 1, 2 | syl 14 | . 2 |
4 | rabeqbidv.2 | . . 3 | |
5 | 4 | rabbidv 2715 | . 2 |
6 | 3, 5 | eqtrd 2198 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 wceq 1343 crab 2448 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rab 2453 |
This theorem is referenced by: elfvmptrab1 5580 mpoxopoveq 6208 supeq123d 6956 phival 12145 dfphi2 12152 cldval 12739 neifval 12780 cnfval 12834 cnpfval 12835 cnprcl2k 12846 hmeofvalg 12943 ispsmet 12963 ismet 12984 isxmet 12985 blfvalps 13025 cncfval 13199 |
Copyright terms: Public domain | W3C validator |