Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rabeqbidv | Unicode version |
Description: Equality of restricted class abstractions. (Contributed by Jeff Madsen, 1-Dec-2009.) |
Ref | Expression |
---|---|
rabeqbidv.1 | |
rabeqbidv.2 |
Ref | Expression |
---|---|
rabeqbidv |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rabeqbidv.1 | . . 3 | |
2 | rabeq 2722 | . . 3 | |
3 | 1, 2 | syl 14 | . 2 |
4 | rabeqbidv.2 | . . 3 | |
5 | 4 | rabbidv 2719 | . 2 |
6 | 3, 5 | eqtrd 2203 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 wceq 1348 crab 2452 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rab 2457 |
This theorem is referenced by: elfvmptrab1 5590 mpoxopoveq 6219 supeq123d 6968 phival 12167 dfphi2 12174 ismhm 12685 issubm 12695 cldval 12893 neifval 12934 cnfval 12988 cnpfval 12989 cnprcl2k 13000 hmeofvalg 13097 ispsmet 13117 ismet 13138 isxmet 13139 blfvalps 13179 cncfval 13353 |
Copyright terms: Public domain | W3C validator |