| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rabsn | Unicode version | ||
| Description: Condition where a restricted class abstraction is a singleton. (Contributed by NM, 28-May-2006.) |
| Ref | Expression |
|---|---|
| rabsn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 2268 |
. . . . 5
| |
| 2 | 1 | pm5.32ri 455 |
. . . 4
|
| 3 | 2 | baib 921 |
. . 3
|
| 4 | 3 | abbidv 2323 |
. 2
|
| 5 | df-rab 2493 |
. 2
| |
| 6 | df-sn 3639 |
. 2
| |
| 7 | 4, 5, 6 | 3eqtr4g 2263 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-11 1529 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-rab 2493 df-sn 3639 |
| This theorem is referenced by: unisn3 4492 |
| Copyright terms: Public domain | W3C validator |