Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rabsn | Unicode version |
Description: Condition where a restricted class abstraction is a singleton. (Contributed by NM, 28-May-2006.) |
Ref | Expression |
---|---|
rabsn |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2229 | . . . . 5 | |
2 | 1 | pm5.32ri 451 | . . . 4 |
3 | 2 | baib 909 | . . 3 |
4 | 3 | abbidv 2284 | . 2 |
5 | df-rab 2453 | . 2 | |
6 | df-sn 3582 | . 2 | |
7 | 4, 5, 6 | 3eqtr4g 2224 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1343 wcel 2136 cab 2151 crab 2448 csn 3576 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-11 1494 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-rab 2453 df-sn 3582 |
This theorem is referenced by: unisn3 4423 |
Copyright terms: Public domain | W3C validator |