ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rabsn Unicode version

Theorem rabsn 3733
Description: Condition where a restricted class abstraction is a singleton. (Contributed by NM, 28-May-2006.)
Assertion
Ref Expression
rabsn  |-  ( B  e.  A  ->  { x  e.  A  |  x  =  B }  =  { B } )
Distinct variable groups:    x, A    x, B

Proof of Theorem rabsn
StepHypRef Expression
1 eleq1 2292 . . . . 5  |-  ( x  =  B  ->  (
x  e.  A  <->  B  e.  A ) )
21pm5.32ri 455 . . . 4  |-  ( ( x  e.  A  /\  x  =  B )  <->  ( B  e.  A  /\  x  =  B )
)
32baib 924 . . 3  |-  ( B  e.  A  ->  (
( x  e.  A  /\  x  =  B
)  <->  x  =  B
) )
43abbidv 2347 . 2  |-  ( B  e.  A  ->  { x  |  ( x  e.  A  /\  x  =  B ) }  =  { x  |  x  =  B } )
5 df-rab 2517 . 2  |-  { x  e.  A  |  x  =  B }  =  {
x  |  ( x  e.  A  /\  x  =  B ) }
6 df-sn 3672 . 2  |-  { B }  =  { x  |  x  =  B }
74, 5, 63eqtr4g 2287 1  |-  ( B  e.  A  ->  { x  e.  A  |  x  =  B }  =  { B } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1395    e. wcel 2200   {cab 2215   {crab 2512   {csn 3666
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-11 1552  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-rab 2517  df-sn 3672
This theorem is referenced by:  unisn3  4536
  Copyright terms: Public domain W3C validator