ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unisn3 Unicode version

Theorem unisn3 4430
Description: Union of a singleton in the form of a restricted class abstraction. (Contributed by NM, 3-Jul-2008.)
Assertion
Ref Expression
unisn3  |-  ( A  e.  B  ->  U. {
x  e.  B  |  x  =  A }  =  A )
Distinct variable groups:    x, A    x, B

Proof of Theorem unisn3
StepHypRef Expression
1 rabsn 3650 . . 3  |-  ( A  e.  B  ->  { x  e.  B  |  x  =  A }  =  { A } )
21unieqd 3807 . 2  |-  ( A  e.  B  ->  U. {
x  e.  B  |  x  =  A }  =  U. { A }
)
3 unisng 3813 . 2  |-  ( A  e.  B  ->  U. { A }  =  A
)
42, 3eqtrd 2203 1  |-  ( A  e.  B  ->  U. {
x  e.  B  |  x  =  A }  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1348    e. wcel 2141   {crab 2452   {csn 3583   U.cuni 3796
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-rex 2454  df-rab 2457  df-v 2732  df-un 3125  df-sn 3589  df-pr 3590  df-uni 3797
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator