ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unisn3 Unicode version

Theorem unisn3 4536
Description: Union of a singleton in the form of a restricted class abstraction. (Contributed by NM, 3-Jul-2008.)
Assertion
Ref Expression
unisn3  |-  ( A  e.  B  ->  U. {
x  e.  B  |  x  =  A }  =  A )
Distinct variable groups:    x, A    x, B

Proof of Theorem unisn3
StepHypRef Expression
1 rabsn 3733 . . 3  |-  ( A  e.  B  ->  { x  e.  B  |  x  =  A }  =  { A } )
21unieqd 3899 . 2  |-  ( A  e.  B  ->  U. {
x  e.  B  |  x  =  A }  =  U. { A }
)
3 unisng 3905 . 2  |-  ( A  e.  B  ->  U. { A }  =  A
)
42, 3eqtrd 2262 1  |-  ( A  e.  B  ->  U. {
x  e.  B  |  x  =  A }  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1395    e. wcel 2200   {crab 2512   {csn 3666   U.cuni 3888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-rex 2514  df-rab 2517  df-v 2801  df-un 3201  df-sn 3672  df-pr 3673  df-uni 3889
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator