ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  r19.12sn Unicode version

Theorem r19.12sn 3709
Description: Special case of r19.12 2614 where its converse holds. (Contributed by NM, 19-May-2008.) (Revised by Mario Carneiro, 23-Apr-2015.) (Revised by BJ, 20-Dec-2021.)
Assertion
Ref Expression
r19.12sn  |-  ( A  e.  V  ->  ( E. x  e.  { A } A. y  e.  B  ph  <->  A. y  e.  B  E. x  e.  { A } ph ) )
Distinct variable groups:    x, y, A   
x, B
Allowed substitution hints:    ph( x, y)    B( y)    V( x, y)

Proof of Theorem r19.12sn
StepHypRef Expression
1 sbcralg 3084 . 2  |-  ( A  e.  V  ->  ( [. A  /  x ]. A. y  e.  B  ph  <->  A. y  e.  B  [. A  /  x ]. ph )
)
2 rexsns 3682 . 2  |-  ( E. x  e.  { A } A. y  e.  B  ph  <->  [. A  /  x ]. A. y  e.  B  ph )
3 rexsns 3682 . . 3  |-  ( E. x  e.  { A } ph  <->  [. A  /  x ]. ph )
43ralbii 2514 . 2  |-  ( A. y  e.  B  E. x  e.  { A } ph  <->  A. y  e.  B  [. A  /  x ]. ph )
51, 2, 43bitr4g 223 1  |-  ( A  e.  V  ->  ( E. x  e.  { A } A. y  e.  B  ph  <->  A. y  e.  B  E. x  e.  { A } ph ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    e. wcel 2178   A.wral 2486   E.wrex 2487   [.wsbc 3005   {csn 3643
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-sbc 3006  df-sn 3649
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator