ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  r19.12sn Unicode version

Theorem r19.12sn 3660
Description: Special case of r19.12 2583 where its converse holds. (Contributed by NM, 19-May-2008.) (Revised by Mario Carneiro, 23-Apr-2015.) (Revised by BJ, 20-Dec-2021.)
Assertion
Ref Expression
r19.12sn  |-  ( A  e.  V  ->  ( E. x  e.  { A } A. y  e.  B  ph  <->  A. y  e.  B  E. x  e.  { A } ph ) )
Distinct variable groups:    x, y, A   
x, B
Allowed substitution hints:    ph( x, y)    B( y)    V( x, y)

Proof of Theorem r19.12sn
StepHypRef Expression
1 sbcralg 3043 . 2  |-  ( A  e.  V  ->  ( [. A  /  x ]. A. y  e.  B  ph  <->  A. y  e.  B  [. A  /  x ]. ph )
)
2 rexsns 3633 . 2  |-  ( E. x  e.  { A } A. y  e.  B  ph  <->  [. A  /  x ]. A. y  e.  B  ph )
3 rexsns 3633 . . 3  |-  ( E. x  e.  { A } ph  <->  [. A  /  x ]. ph )
43ralbii 2483 . 2  |-  ( A. y  e.  B  E. x  e.  { A } ph  <->  A. y  e.  B  [. A  /  x ]. ph )
51, 2, 43bitr4g 223 1  |-  ( A  e.  V  ->  ( E. x  e.  { A } A. y  e.  B  ph  <->  A. y  e.  B  E. x  e.  { A } ph ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    e. wcel 2148   A.wral 2455   E.wrex 2456   [.wsbc 2964   {csn 3594
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-sbc 2965  df-sn 3600
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator