ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  r19.12sn Unicode version

Theorem r19.12sn 3642
Description: Special case of r19.12 2572 where its converse holds. (Contributed by NM, 19-May-2008.) (Revised by Mario Carneiro, 23-Apr-2015.) (Revised by BJ, 20-Dec-2021.)
Assertion
Ref Expression
r19.12sn  |-  ( A  e.  V  ->  ( E. x  e.  { A } A. y  e.  B  ph  <->  A. y  e.  B  E. x  e.  { A } ph ) )
Distinct variable groups:    x, y, A   
x, B
Allowed substitution hints:    ph( x, y)    B( y)    V( x, y)

Proof of Theorem r19.12sn
StepHypRef Expression
1 sbcralg 3029 . 2  |-  ( A  e.  V  ->  ( [. A  /  x ]. A. y  e.  B  ph  <->  A. y  e.  B  [. A  /  x ]. ph )
)
2 rexsns 3615 . 2  |-  ( E. x  e.  { A } A. y  e.  B  ph  <->  [. A  /  x ]. A. y  e.  B  ph )
3 rexsns 3615 . . 3  |-  ( E. x  e.  { A } ph  <->  [. A  /  x ]. ph )
43ralbii 2472 . 2  |-  ( A. y  e.  B  E. x  e.  { A } ph  <->  A. y  e.  B  [. A  /  x ]. ph )
51, 2, 43bitr4g 222 1  |-  ( A  e.  V  ->  ( E. x  e.  { A } A. y  e.  B  ph  <->  A. y  e.  B  E. x  e.  { A } ph ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    e. wcel 2136   A.wral 2444   E.wrex 2445   [.wsbc 2951   {csn 3576
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-sbc 2952  df-sn 3582
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator