ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rabsn GIF version

Theorem rabsn 3643
Description: Condition where a restricted class abstraction is a singleton. (Contributed by NM, 28-May-2006.)
Assertion
Ref Expression
rabsn (𝐵𝐴 → {𝑥𝐴𝑥 = 𝐵} = {𝐵})
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem rabsn
StepHypRef Expression
1 eleq1 2229 . . . . 5 (𝑥 = 𝐵 → (𝑥𝐴𝐵𝐴))
21pm5.32ri 451 . . . 4 ((𝑥𝐴𝑥 = 𝐵) ↔ (𝐵𝐴𝑥 = 𝐵))
32baib 909 . . 3 (𝐵𝐴 → ((𝑥𝐴𝑥 = 𝐵) ↔ 𝑥 = 𝐵))
43abbidv 2284 . 2 (𝐵𝐴 → {𝑥 ∣ (𝑥𝐴𝑥 = 𝐵)} = {𝑥𝑥 = 𝐵})
5 df-rab 2453 . 2 {𝑥𝐴𝑥 = 𝐵} = {𝑥 ∣ (𝑥𝐴𝑥 = 𝐵)}
6 df-sn 3582 . 2 {𝐵} = {𝑥𝑥 = 𝐵}
74, 5, 63eqtr4g 2224 1 (𝐵𝐴 → {𝑥𝐴𝑥 = 𝐵} = {𝐵})
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1343  wcel 2136  {cab 2151  {crab 2448  {csn 3576
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-11 1494  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-rab 2453  df-sn 3582
This theorem is referenced by:  unisn3  4423
  Copyright terms: Public domain W3C validator