Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rabsn | GIF version |
Description: Condition where a restricted class abstraction is a singleton. (Contributed by NM, 28-May-2006.) |
Ref | Expression |
---|---|
rabsn | ⊢ (𝐵 ∈ 𝐴 → {𝑥 ∈ 𝐴 ∣ 𝑥 = 𝐵} = {𝐵}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2233 | . . . . 5 ⊢ (𝑥 = 𝐵 → (𝑥 ∈ 𝐴 ↔ 𝐵 ∈ 𝐴)) | |
2 | 1 | pm5.32ri 452 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑥 = 𝐵) ↔ (𝐵 ∈ 𝐴 ∧ 𝑥 = 𝐵)) |
3 | 2 | baib 914 | . . 3 ⊢ (𝐵 ∈ 𝐴 → ((𝑥 ∈ 𝐴 ∧ 𝑥 = 𝐵) ↔ 𝑥 = 𝐵)) |
4 | 3 | abbidv 2288 | . 2 ⊢ (𝐵 ∈ 𝐴 → {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝑥 = 𝐵)} = {𝑥 ∣ 𝑥 = 𝐵}) |
5 | df-rab 2457 | . 2 ⊢ {𝑥 ∈ 𝐴 ∣ 𝑥 = 𝐵} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝑥 = 𝐵)} | |
6 | df-sn 3589 | . 2 ⊢ {𝐵} = {𝑥 ∣ 𝑥 = 𝐵} | |
7 | 4, 5, 6 | 3eqtr4g 2228 | 1 ⊢ (𝐵 ∈ 𝐴 → {𝑥 ∈ 𝐴 ∣ 𝑥 = 𝐵} = {𝐵}) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1348 ∈ wcel 2141 {cab 2156 {crab 2452 {csn 3583 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-11 1499 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-rab 2457 df-sn 3589 |
This theorem is referenced by: unisn3 4430 |
Copyright terms: Public domain | W3C validator |