ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rabsn GIF version

Theorem rabsn 3689
Description: Condition where a restricted class abstraction is a singleton. (Contributed by NM, 28-May-2006.)
Assertion
Ref Expression
rabsn (𝐵𝐴 → {𝑥𝐴𝑥 = 𝐵} = {𝐵})
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem rabsn
StepHypRef Expression
1 eleq1 2259 . . . . 5 (𝑥 = 𝐵 → (𝑥𝐴𝐵𝐴))
21pm5.32ri 455 . . . 4 ((𝑥𝐴𝑥 = 𝐵) ↔ (𝐵𝐴𝑥 = 𝐵))
32baib 920 . . 3 (𝐵𝐴 → ((𝑥𝐴𝑥 = 𝐵) ↔ 𝑥 = 𝐵))
43abbidv 2314 . 2 (𝐵𝐴 → {𝑥 ∣ (𝑥𝐴𝑥 = 𝐵)} = {𝑥𝑥 = 𝐵})
5 df-rab 2484 . 2 {𝑥𝐴𝑥 = 𝐵} = {𝑥 ∣ (𝑥𝐴𝑥 = 𝐵)}
6 df-sn 3628 . 2 {𝐵} = {𝑥𝑥 = 𝐵}
74, 5, 63eqtr4g 2254 1 (𝐵𝐴 → {𝑥𝐴𝑥 = 𝐵} = {𝐵})
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2167  {cab 2182  {crab 2479  {csn 3622
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-11 1520  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-rab 2484  df-sn 3628
This theorem is referenced by:  unisn3  4480
  Copyright terms: Public domain W3C validator