ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rabsn GIF version

Theorem rabsn 3537
Description: Condition where a restricted class abstraction is a singleton. (Contributed by NM, 28-May-2006.)
Assertion
Ref Expression
rabsn (𝐵𝐴 → {𝑥𝐴𝑥 = 𝐵} = {𝐵})
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem rabsn
StepHypRef Expression
1 eleq1 2162 . . . . 5 (𝑥 = 𝐵 → (𝑥𝐴𝐵𝐴))
21pm5.32ri 446 . . . 4 ((𝑥𝐴𝑥 = 𝐵) ↔ (𝐵𝐴𝑥 = 𝐵))
32baib 872 . . 3 (𝐵𝐴 → ((𝑥𝐴𝑥 = 𝐵) ↔ 𝑥 = 𝐵))
43abbidv 2217 . 2 (𝐵𝐴 → {𝑥 ∣ (𝑥𝐴𝑥 = 𝐵)} = {𝑥𝑥 = 𝐵})
5 df-rab 2384 . 2 {𝑥𝐴𝑥 = 𝐵} = {𝑥 ∣ (𝑥𝐴𝑥 = 𝐵)}
6 df-sn 3480 . 2 {𝐵} = {𝑥𝑥 = 𝐵}
74, 5, 63eqtr4g 2157 1 (𝐵𝐴 → {𝑥𝐴𝑥 = 𝐵} = {𝐵})
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1299  wcel 1448  {cab 2086  {crab 2379  {csn 3474
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-11 1452  ax-4 1455  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082
This theorem depends on definitions:  df-bi 116  df-tru 1302  df-nf 1405  df-sb 1704  df-clab 2087  df-cleq 2093  df-clel 2096  df-rab 2384  df-sn 3480
This theorem is referenced by:  unisn3  4304
  Copyright terms: Public domain W3C validator