| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ralbidva | Unicode version | ||
| Description: Formula-building rule for restricted universal quantifier (deduction form). (Contributed by NM, 4-Mar-1997.) |
| Ref | Expression |
|---|---|
| ralbidva.1 |
|
| Ref | Expression |
|---|---|
| ralbidva |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1542 |
. 2
| |
| 2 | ralbidva.1 |
. 2
| |
| 3 | 1, 2 | ralbida 2491 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-4 1524 ax-17 1540 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-ral 2480 |
| This theorem is referenced by: raleqbidva 2711 poinxp 4733 funimass4 5614 fnmptfvd 5669 funimass3 5681 funconstss 5683 cocan1 5837 cocan2 5838 isocnv2 5862 isores2 5863 isoini2 5869 ofrfval 6148 ofrfval2 6156 dfsmo2 6354 smores 6359 smores2 6361 ac6sfi 6968 supisolem 7083 ordiso2 7110 ismkvnex 7230 nninfwlporlemd 7247 caucvgsrlemcau 7877 suplocsrlempr 7891 axsuploc 8116 suprleubex 8998 dfinfre 9000 zextlt 9435 prime 9442 infregelbex 9689 fzshftral 10200 nninfinf 10552 fimaxq 10936 clim 11463 clim2 11465 clim2c 11466 clim0c 11468 climabs0 11489 climrecvg1n 11530 mertenslem2 11718 mertensabs 11719 dfgcd2 12206 sqrt2irr 12355 pc11 12525 pcz 12526 1arith 12561 infpn2 12698 grpidpropdg 13076 sgrppropd 13115 mndpropd 13142 grppropd 13219 issubg4m 13399 rngpropd 13587 ringpropd 13670 oppr1g 13714 lsspropdg 14063 isridlrng 14114 isridl 14136 expghmap 14239 tgss2 14399 neipsm 14474 ssidcn 14530 lmbrf 14535 cnnei 14552 cnrest2 14556 lmss 14566 lmres 14568 ismet2 14674 elmopn2 14769 metss 14814 metrest 14826 metcnp 14832 metcnp2 14833 metcn 14834 txmetcnp 14838 divcnap 14885 elcncf2 14894 mulc1cncf 14909 cncfmet 14912 cdivcncfap 14924 limcdifap 14982 limcmpted 14983 cnlimc 14992 mpodvdsmulf1o 15310 2sqlem6 15445 iswomni0 15782 cndcap 15790 |
| Copyright terms: Public domain | W3C validator |