| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ralbidva | Unicode version | ||
| Description: Formula-building rule for restricted universal quantifier (deduction form). (Contributed by NM, 4-Mar-1997.) |
| Ref | Expression |
|---|---|
| ralbidva.1 |
|
| Ref | Expression |
|---|---|
| ralbidva |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1552 |
. 2
| |
| 2 | ralbidva.1 |
. 2
| |
| 3 | 1, 2 | ralbida 2502 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 ax-4 1534 ax-17 1550 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-ral 2491 |
| This theorem is referenced by: raleqbidva 2723 poinxp 4762 funimass4 5652 fnmptfvd 5707 funimass3 5719 funconstss 5721 cocan1 5879 cocan2 5880 isocnv2 5904 isores2 5905 isoini2 5911 ofrfval 6190 ofrfval2 6198 dfsmo2 6396 smores 6401 smores2 6403 ac6sfi 7021 supisolem 7136 ordiso2 7163 ismkvnex 7283 nninfwlporlemd 7300 caucvgsrlemcau 7941 suplocsrlempr 7955 axsuploc 8180 suprleubex 9062 dfinfre 9064 zextlt 9500 prime 9507 infregelbex 9754 fzshftral 10265 nninfinf 10625 fimaxq 11009 swrdspsleq 11158 pfxeq 11187 clim 11707 clim2 11709 clim2c 11710 clim0c 11712 climabs0 11733 climrecvg1n 11774 mertenslem2 11962 mertensabs 11963 dfgcd2 12450 sqrt2irr 12599 pc11 12769 pcz 12770 1arith 12805 infpn2 12942 grpidpropdg 13321 sgrppropd 13360 mndpropd 13387 grppropd 13464 issubg4m 13644 rngpropd 13832 ringpropd 13915 oppr1g 13959 lsspropdg 14308 isridlrng 14359 isridl 14381 expghmap 14484 tgss2 14666 neipsm 14741 ssidcn 14797 lmbrf 14802 cnnei 14819 cnrest2 14823 lmss 14833 lmres 14835 ismet2 14941 elmopn2 15036 metss 15081 metrest 15093 metcnp 15099 metcnp2 15100 metcn 15101 txmetcnp 15105 divcnap 15152 elcncf2 15161 mulc1cncf 15176 cncfmet 15179 cdivcncfap 15191 limcdifap 15249 limcmpted 15250 cnlimc 15259 mpodvdsmulf1o 15577 2sqlem6 15712 iswomni0 16192 cndcap 16200 |
| Copyright terms: Public domain | W3C validator |