| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ralbidva | Unicode version | ||
| Description: Formula-building rule for restricted universal quantifier (deduction form). (Contributed by NM, 4-Mar-1997.) |
| Ref | Expression |
|---|---|
| ralbidva.1 |
|
| Ref | Expression |
|---|---|
| ralbidva |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1542 |
. 2
| |
| 2 | ralbidva.1 |
. 2
| |
| 3 | 1, 2 | ralbida 2491 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-4 1524 ax-17 1540 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-ral 2480 |
| This theorem is referenced by: raleqbidva 2711 poinxp 4732 funimass4 5611 fnmptfvd 5666 funimass3 5678 funconstss 5680 cocan1 5834 cocan2 5835 isocnv2 5859 isores2 5860 isoini2 5866 ofrfval 6144 ofrfval2 6152 dfsmo2 6345 smores 6350 smores2 6352 ac6sfi 6959 supisolem 7074 ordiso2 7101 ismkvnex 7221 nninfwlporlemd 7238 caucvgsrlemcau 7860 suplocsrlempr 7874 axsuploc 8099 suprleubex 8981 dfinfre 8983 zextlt 9418 prime 9425 infregelbex 9672 fzshftral 10183 nninfinf 10535 fimaxq 10919 clim 11446 clim2 11448 clim2c 11449 clim0c 11451 climabs0 11472 climrecvg1n 11513 mertenslem2 11701 mertensabs 11702 dfgcd2 12181 sqrt2irr 12330 pc11 12500 pcz 12501 1arith 12536 infpn2 12673 grpidpropdg 13017 sgrppropd 13056 mndpropd 13081 grppropd 13149 issubg4m 13323 rngpropd 13511 ringpropd 13594 oppr1g 13638 lsspropdg 13987 isridlrng 14038 isridl 14060 expghmap 14163 tgss2 14315 neipsm 14390 ssidcn 14446 lmbrf 14451 cnnei 14468 cnrest2 14472 lmss 14482 lmres 14484 ismet2 14590 elmopn2 14685 metss 14730 metrest 14742 metcnp 14748 metcnp2 14749 metcn 14750 txmetcnp 14754 divcnap 14801 elcncf2 14810 mulc1cncf 14825 cncfmet 14828 cdivcncfap 14840 limcdifap 14898 limcmpted 14899 cnlimc 14908 mpodvdsmulf1o 15226 2sqlem6 15361 iswomni0 15695 cndcap 15703 |
| Copyright terms: Public domain | W3C validator |