![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ralbidva | Unicode version |
Description: Formula-building rule for restricted universal quantifier (deduction form). (Contributed by NM, 4-Mar-1997.) |
Ref | Expression |
---|---|
ralbidva.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
ralbidva |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1539 |
. 2
![]() ![]() ![]() ![]() | |
2 | ralbidva.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | ralbida 2488 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-4 1521 ax-17 1537 |
This theorem depends on definitions: df-bi 117 df-nf 1472 df-ral 2477 |
This theorem is referenced by: raleqbidva 2708 poinxp 4729 funimass4 5608 fnmptfvd 5663 funimass3 5675 funconstss 5677 cocan1 5831 cocan2 5832 isocnv2 5856 isores2 5857 isoini2 5863 ofrfval 6141 ofrfval2 6149 dfsmo2 6342 smores 6347 smores2 6349 ac6sfi 6956 supisolem 7069 ordiso2 7096 ismkvnex 7216 nninfwlporlemd 7233 caucvgsrlemcau 7855 suplocsrlempr 7869 axsuploc 8094 suprleubex 8975 dfinfre 8977 zextlt 9412 prime 9419 infregelbex 9666 fzshftral 10177 nninfinf 10517 fimaxq 10901 clim 11427 clim2 11429 clim2c 11430 clim0c 11432 climabs0 11453 climrecvg1n 11494 mertenslem2 11682 mertensabs 11683 dfgcd2 12154 sqrt2irr 12303 pc11 12472 pcz 12473 1arith 12508 infpn2 12616 grpidpropdg 12960 sgrppropd 12999 mndpropd 13024 grppropd 13092 issubg4m 13266 rngpropd 13454 ringpropd 13537 oppr1g 13581 lsspropdg 13930 isridlrng 13981 isridl 14003 expghmap 14106 tgss2 14258 neipsm 14333 ssidcn 14389 lmbrf 14394 cnnei 14411 cnrest2 14415 lmss 14425 lmres 14427 ismet2 14533 elmopn2 14628 metss 14673 metrest 14685 metcnp 14691 metcnp2 14692 metcn 14693 txmetcnp 14697 divcnap 14744 elcncf2 14753 mulc1cncf 14768 cncfmet 14771 cdivcncfap 14783 limcdifap 14841 limcmpted 14842 cnlimc 14851 2sqlem6 15277 iswomni0 15611 cndcap 15619 |
Copyright terms: Public domain | W3C validator |