| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ralbidva | Unicode version | ||
| Description: Formula-building rule for restricted universal quantifier (deduction form). (Contributed by NM, 4-Mar-1997.) |
| Ref | Expression |
|---|---|
| ralbidva.1 |
|
| Ref | Expression |
|---|---|
| ralbidva |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1542 |
. 2
| |
| 2 | ralbidva.1 |
. 2
| |
| 3 | 1, 2 | ralbida 2491 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-4 1524 ax-17 1540 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-ral 2480 |
| This theorem is referenced by: raleqbidva 2711 poinxp 4733 funimass4 5614 fnmptfvd 5669 funimass3 5681 funconstss 5683 cocan1 5837 cocan2 5838 isocnv2 5862 isores2 5863 isoini2 5869 ofrfval 6148 ofrfval2 6156 dfsmo2 6354 smores 6359 smores2 6361 ac6sfi 6968 supisolem 7083 ordiso2 7110 ismkvnex 7230 nninfwlporlemd 7247 caucvgsrlemcau 7879 suplocsrlempr 7893 axsuploc 8118 suprleubex 9000 dfinfre 9002 zextlt 9437 prime 9444 infregelbex 9691 fzshftral 10202 nninfinf 10554 fimaxq 10938 clim 11465 clim2 11467 clim2c 11468 clim0c 11470 climabs0 11491 climrecvg1n 11532 mertenslem2 11720 mertensabs 11721 dfgcd2 12208 sqrt2irr 12357 pc11 12527 pcz 12528 1arith 12563 infpn2 12700 grpidpropdg 13078 sgrppropd 13117 mndpropd 13144 grppropd 13221 issubg4m 13401 rngpropd 13589 ringpropd 13672 oppr1g 13716 lsspropdg 14065 isridlrng 14116 isridl 14138 expghmap 14241 tgss2 14423 neipsm 14498 ssidcn 14554 lmbrf 14559 cnnei 14576 cnrest2 14580 lmss 14590 lmres 14592 ismet2 14698 elmopn2 14793 metss 14838 metrest 14850 metcnp 14856 metcnp2 14857 metcn 14858 txmetcnp 14862 divcnap 14909 elcncf2 14918 mulc1cncf 14933 cncfmet 14936 cdivcncfap 14948 limcdifap 15006 limcmpted 15007 cnlimc 15016 mpodvdsmulf1o 15334 2sqlem6 15469 iswomni0 15808 cndcap 15816 |
| Copyright terms: Public domain | W3C validator |