![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ralbidva | Unicode version |
Description: Formula-building rule for restricted universal quantifier (deduction form). (Contributed by NM, 4-Mar-1997.) |
Ref | Expression |
---|---|
ralbidva.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
ralbidva |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1539 |
. 2
![]() ![]() ![]() ![]() | |
2 | ralbidva.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | ralbida 2488 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-4 1521 ax-17 1537 |
This theorem depends on definitions: df-bi 117 df-nf 1472 df-ral 2477 |
This theorem is referenced by: raleqbidva 2708 poinxp 4728 funimass4 5607 fnmptfvd 5662 funimass3 5674 funconstss 5676 cocan1 5830 cocan2 5831 isocnv2 5855 isores2 5856 isoini2 5862 ofrfval 6139 ofrfval2 6147 dfsmo2 6340 smores 6345 smores2 6347 ac6sfi 6954 supisolem 7067 ordiso2 7094 ismkvnex 7214 nninfwlporlemd 7231 caucvgsrlemcau 7853 suplocsrlempr 7867 axsuploc 8092 suprleubex 8973 dfinfre 8975 zextlt 9409 prime 9416 infregelbex 9663 fzshftral 10174 nninfinf 10514 fimaxq 10898 clim 11424 clim2 11426 clim2c 11427 clim0c 11429 climabs0 11450 climrecvg1n 11491 mertenslem2 11679 mertensabs 11680 dfgcd2 12151 sqrt2irr 12300 pc11 12469 pcz 12470 1arith 12505 infpn2 12613 grpidpropdg 12957 sgrppropd 12996 mndpropd 13021 grppropd 13089 issubg4m 13263 rngpropd 13451 ringpropd 13534 oppr1g 13578 lsspropdg 13927 isridlrng 13978 isridl 14000 expghmap 14095 tgss2 14247 neipsm 14322 ssidcn 14378 lmbrf 14383 cnnei 14400 cnrest2 14404 lmss 14414 lmres 14416 ismet2 14522 elmopn2 14617 metss 14662 metrest 14674 metcnp 14680 metcnp2 14681 metcn 14682 txmetcnp 14686 divcnap 14723 elcncf2 14729 mulc1cncf 14744 cncfmet 14747 cdivcncfap 14758 limcdifap 14816 limcmpted 14817 cnlimc 14826 2sqlem6 15207 iswomni0 15541 cndcap 15549 |
Copyright terms: Public domain | W3C validator |