Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  iswomninnlem Unicode version

Theorem iswomninnlem 15539
Description: Lemma for iswomnimap 7225. The result, with a hypothesis for convenience. (Contributed by Jim Kingdon, 20-Jun-2024.)
Hypothesis
Ref Expression
iswomninnlem.g  |-  G  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  0 )
Assertion
Ref Expression
iswomninnlem  |-  ( A  e.  V  ->  ( A  e. WOmni  <->  A. f  e.  ( { 0 ,  1 }  ^m  A )DECID  A. x  e.  A  (
f `  x )  =  1 ) )
Distinct variable groups:    A, f, x   
f, G, x    f, V, x

Proof of Theorem iswomninnlem
Dummy variable  g is distinct from all other variables.
StepHypRef Expression
1 iswomnimap 7225 . 2  |-  ( A  e.  V  ->  ( A  e. WOmni  <->  A. g  e.  ( 2o  ^m  A )DECID  A. x  e.  A  (
g `  x )  =  1o ) )
2 fveq1 5553 . . . . . . . . 9  |-  ( g  =  ( `' G  o.  f )  ->  (
g `  x )  =  ( ( `' G  o.  f ) `
 x ) )
32eqeq1d 2202 . . . . . . . 8  |-  ( g  =  ( `' G  o.  f )  ->  (
( g `  x
)  =  1o  <->  ( ( `' G  o.  f
) `  x )  =  1o ) )
43ralbidv 2494 . . . . . . 7  |-  ( g  =  ( `' G  o.  f )  ->  ( A. x  e.  A  ( g `  x
)  =  1o  <->  A. x  e.  A  ( ( `' G  o.  f
) `  x )  =  1o ) )
54dcbid 839 . . . . . 6  |-  ( g  =  ( `' G  o.  f )  ->  (DECID  A. x  e.  A  (
g `  x )  =  1o  <-> DECID  A. x  e.  A  ( ( `' G  o.  f ) `  x
)  =  1o ) )
6 simplr 528 . . . . . 6  |-  ( ( ( A  e.  V  /\  A. g  e.  ( 2o  ^m  A )DECID  A. x  e.  A  (
g `  x )  =  1o )  /\  f  e.  ( { 0 ,  1 }  ^m  A
) )  ->  A. g  e.  ( 2o  ^m  A
)DECID  A. x  e.  A  ( g `  x
)  =  1o )
7 iswomninnlem.g . . . . . . . . . . 11  |-  G  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  0 )
87012of 15486 . . . . . . . . . 10  |-  ( `' G  |`  { 0 ,  1 } ) : { 0 ,  1 } --> 2o
9 elmapi 6724 . . . . . . . . . 10  |-  ( f  e.  ( { 0 ,  1 }  ^m  A )  ->  f : A --> { 0 ,  1 } )
10 fco2 5420 . . . . . . . . . 10  |-  ( ( ( `' G  |`  { 0 ,  1 } ) : {
0 ,  1 } --> 2o  /\  f : A --> { 0 ,  1 } )  -> 
( `' G  o.  f ) : A --> 2o )
118, 9, 10sylancr 414 . . . . . . . . 9  |-  ( f  e.  ( { 0 ,  1 }  ^m  A )  ->  ( `' G  o.  f
) : A --> 2o )
1211adantl 277 . . . . . . . 8  |-  ( ( A  e.  V  /\  f  e.  ( {
0 ,  1 }  ^m  A ) )  ->  ( `' G  o.  f ) : A --> 2o )
13 2onn 6574 . . . . . . . . . 10  |-  2o  e.  om
1413a1i 9 . . . . . . . . 9  |-  ( ( A  e.  V  /\  f  e.  ( {
0 ,  1 }  ^m  A ) )  ->  2o  e.  om )
15 simpl 109 . . . . . . . . 9  |-  ( ( A  e.  V  /\  f  e.  ( {
0 ,  1 }  ^m  A ) )  ->  A  e.  V
)
1614, 15elmapd 6716 . . . . . . . 8  |-  ( ( A  e.  V  /\  f  e.  ( {
0 ,  1 }  ^m  A ) )  ->  ( ( `' G  o.  f )  e.  ( 2o  ^m  A )  <->  ( `' G  o.  f ) : A --> 2o ) )
1712, 16mpbird 167 . . . . . . 7  |-  ( ( A  e.  V  /\  f  e.  ( {
0 ,  1 }  ^m  A ) )  ->  ( `' G  o.  f )  e.  ( 2o  ^m  A ) )
1817adantlr 477 . . . . . 6  |-  ( ( ( A  e.  V  /\  A. g  e.  ( 2o  ^m  A )DECID  A. x  e.  A  (
g `  x )  =  1o )  /\  f  e.  ( { 0 ,  1 }  ^m  A
) )  ->  ( `' G  o.  f
)  e.  ( 2o 
^m  A ) )
195, 6, 18rspcdva 2869 . . . . 5  |-  ( ( ( A  e.  V  /\  A. g  e.  ( 2o  ^m  A )DECID  A. x  e.  A  (
g `  x )  =  1o )  /\  f  e.  ( { 0 ,  1 }  ^m  A
) )  -> DECID  A. x  e.  A  ( ( `' G  o.  f ) `  x
)  =  1o )
20 nfv 1539 . . . . . . . . 9  |-  F/ x  A  e.  V
21 nfcv 2336 . . . . . . . . . 10  |-  F/_ x
( 2o  ^m  A
)
22 nfra1 2525 . . . . . . . . . . 11  |-  F/ x A. x  e.  A  ( g `  x
)  =  1o
2322nfdc 1670 . . . . . . . . . 10  |-  F/ xDECID  A. x  e.  A  ( g `  x )  =  1o
2421, 23nfralxy 2532 . . . . . . . . 9  |-  F/ x A. g  e.  ( 2o  ^m  A )DECID  A. x  e.  A  ( g `  x )  =  1o
2520, 24nfan 1576 . . . . . . . 8  |-  F/ x
( A  e.  V  /\  A. g  e.  ( 2o  ^m  A )DECID  A. x  e.  A  (
g `  x )  =  1o )
26 nfv 1539 . . . . . . . 8  |-  F/ x  f  e.  ( {
0 ,  1 }  ^m  A )
2725, 26nfan 1576 . . . . . . 7  |-  F/ x
( ( A  e.  V  /\  A. g  e.  ( 2o  ^m  A
)DECID  A. x  e.  A  ( g `  x
)  =  1o )  /\  f  e.  ( { 0 ,  1 }  ^m  A ) )
289ad2antlr 489 . . . . . . . . . 10  |-  ( ( ( ( A  e.  V  /\  A. g  e.  ( 2o  ^m  A
)DECID  A. x  e.  A  ( g `  x
)  =  1o )  /\  f  e.  ( { 0 ,  1 }  ^m  A ) )  /\  x  e.  A )  ->  f : A --> { 0 ,  1 } )
29 fvco3 5628 . . . . . . . . . 10  |-  ( ( f : A --> { 0 ,  1 }  /\  x  e.  A )  ->  ( ( `' G  o.  f ) `  x
)  =  ( `' G `  ( f `
 x ) ) )
3028, 29sylancom 420 . . . . . . . . 9  |-  ( ( ( ( A  e.  V  /\  A. g  e.  ( 2o  ^m  A
)DECID  A. x  e.  A  ( g `  x
)  =  1o )  /\  f  e.  ( { 0 ,  1 }  ^m  A ) )  /\  x  e.  A )  ->  (
( `' G  o.  f ) `  x
)  =  ( `' G `  ( f `
 x ) ) )
3130eqeq1d 2202 . . . . . . . 8  |-  ( ( ( ( A  e.  V  /\  A. g  e.  ( 2o  ^m  A
)DECID  A. x  e.  A  ( g `  x
)  =  1o )  /\  f  e.  ( { 0 ,  1 }  ^m  A ) )  /\  x  e.  A )  ->  (
( ( `' G  o.  f ) `  x
)  =  1o  <->  ( `' G `  ( f `  x ) )  =  1o ) )
32 df-1o 6469 . . . . . . . . . . . 12  |-  1o  =  suc  (/)
3332fveq2i 5557 . . . . . . . . . . 11  |-  ( G `
 1o )  =  ( G `  suc  (/) )
34 0zd 9329 . . . . . . . . . . . . 13  |-  ( T. 
->  0  e.  ZZ )
35 peano1 4626 . . . . . . . . . . . . . 14  |-  (/)  e.  om
3635a1i 9 . . . . . . . . . . . . 13  |-  ( T. 
->  (/)  e.  om )
3734, 7, 36frec2uzsucd 10472 . . . . . . . . . . . 12  |-  ( T. 
->  ( G `  suc  (/) )  =  ( ( G `  (/) )  +  1 ) )
3837mptru 1373 . . . . . . . . . . 11  |-  ( G `
 suc  (/) )  =  ( ( G `  (/) )  +  1 )
3934, 7frec2uz0d 10470 . . . . . . . . . . . . . 14  |-  ( T. 
->  ( G `  (/) )  =  0 )
4039mptru 1373 . . . . . . . . . . . . 13  |-  ( G `
 (/) )  =  0
4140oveq1i 5928 . . . . . . . . . . . 12  |-  ( ( G `  (/) )  +  1 )  =  ( 0  +  1 )
42 0p1e1 9096 . . . . . . . . . . . 12  |-  ( 0  +  1 )  =  1
4341, 42eqtri 2214 . . . . . . . . . . 11  |-  ( ( G `  (/) )  +  1 )  =  1
4433, 38, 433eqtri 2218 . . . . . . . . . 10  |-  ( G `
 1o )  =  1
4544eqeq2i 2204 . . . . . . . . 9  |-  ( ( G `  ( `' G `  ( f `
 x ) ) )  =  ( G `
 1o )  <->  ( G `  ( `' G `  ( f `  x
) ) )  =  1 )
467frechashgf1o 10499 . . . . . . . . . . . . 13  |-  G : om
-1-1-onto-> NN0
47 f1ocnv 5513 . . . . . . . . . . . . 13  |-  ( G : om -1-1-onto-> NN0  ->  `' G : NN0
-1-1-onto-> om )
48 f1of 5500 . . . . . . . . . . . . 13  |-  ( `' G : NN0 -1-1-onto-> om  ->  `' G : NN0 --> om )
4946, 47, 48mp2b 8 . . . . . . . . . . . 12  |-  `' G : NN0 --> om
5049a1i 9 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  V  /\  A. g  e.  ( 2o  ^m  A
)DECID  A. x  e.  A  ( g `  x
)  =  1o )  /\  f  e.  ( { 0 ,  1 }  ^m  A ) )  /\  x  e.  A )  ->  `' G : NN0 --> om )
51 0nn0 9255 . . . . . . . . . . . . 13  |-  0  e.  NN0
52 1nn0 9256 . . . . . . . . . . . . 13  |-  1  e.  NN0
53 prssi 3776 . . . . . . . . . . . . 13  |-  ( ( 0  e.  NN0  /\  1  e.  NN0 )  ->  { 0 ,  1 }  C_  NN0 )
5451, 52, 53mp2an 426 . . . . . . . . . . . 12  |-  { 0 ,  1 }  C_  NN0
55 simpr 110 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  V  /\  A. g  e.  ( 2o  ^m  A
)DECID  A. x  e.  A  ( g `  x
)  =  1o )  /\  f  e.  ( { 0 ,  1 }  ^m  A ) )  /\  x  e.  A )  ->  x  e.  A )
5628, 55ffvelcdmd 5694 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  V  /\  A. g  e.  ( 2o  ^m  A
)DECID  A. x  e.  A  ( g `  x
)  =  1o )  /\  f  e.  ( { 0 ,  1 }  ^m  A ) )  /\  x  e.  A )  ->  (
f `  x )  e.  { 0 ,  1 } )
5754, 56sselid 3177 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  V  /\  A. g  e.  ( 2o  ^m  A
)DECID  A. x  e.  A  ( g `  x
)  =  1o )  /\  f  e.  ( { 0 ,  1 }  ^m  A ) )  /\  x  e.  A )  ->  (
f `  x )  e.  NN0 )
5850, 57ffvelcdmd 5694 . . . . . . . . . 10  |-  ( ( ( ( A  e.  V  /\  A. g  e.  ( 2o  ^m  A
)DECID  A. x  e.  A  ( g `  x
)  =  1o )  /\  f  e.  ( { 0 ,  1 }  ^m  A ) )  /\  x  e.  A )  ->  ( `' G `  ( f `
 x ) )  e.  om )
59 1onn 6573 . . . . . . . . . . 11  |-  1o  e.  om
60 f1of1 5499 . . . . . . . . . . . . 13  |-  ( G : om -1-1-onto-> NN0  ->  G : om
-1-1-> NN0 )
6146, 60ax-mp 5 . . . . . . . . . . . 12  |-  G : om
-1-1-> NN0
62 f1fveq 5815 . . . . . . . . . . . 12  |-  ( ( G : om -1-1-> NN0  /\  ( ( `' G `  ( f `  x
) )  e.  om  /\  1o  e.  om )
)  ->  ( ( G `  ( `' G `  ( f `  x ) ) )  =  ( G `  1o )  <->  ( `' G `  ( f `  x
) )  =  1o ) )
6361, 62mpan 424 . . . . . . . . . . 11  |-  ( ( ( `' G `  ( f `  x
) )  e.  om  /\  1o  e.  om )  ->  ( ( G `  ( `' G `  ( f `
 x ) ) )  =  ( G `
 1o )  <->  ( `' G `  ( f `  x ) )  =  1o ) )
6459, 63mpan2 425 . . . . . . . . . 10  |-  ( ( `' G `  ( f `
 x ) )  e.  om  ->  (
( G `  ( `' G `  ( f `
 x ) ) )  =  ( G `
 1o )  <->  ( `' G `  ( f `  x ) )  =  1o ) )
6558, 64syl 14 . . . . . . . . 9  |-  ( ( ( ( A  e.  V  /\  A. g  e.  ( 2o  ^m  A
)DECID  A. x  e.  A  ( g `  x
)  =  1o )  /\  f  e.  ( { 0 ,  1 }  ^m  A ) )  /\  x  e.  A )  ->  (
( G `  ( `' G `  ( f `
 x ) ) )  =  ( G `
 1o )  <->  ( `' G `  ( f `  x ) )  =  1o ) )
6645, 65bitr3id 194 . . . . . . . 8  |-  ( ( ( ( A  e.  V  /\  A. g  e.  ( 2o  ^m  A
)DECID  A. x  e.  A  ( g `  x
)  =  1o )  /\  f  e.  ( { 0 ,  1 }  ^m  A ) )  /\  x  e.  A )  ->  (
( G `  ( `' G `  ( f `
 x ) ) )  =  1  <->  ( `' G `  ( f `
 x ) )  =  1o ) )
67 f1ocnvfv2 5821 . . . . . . . . . 10  |-  ( ( G : om -1-1-onto-> NN0  /\  ( f `
 x )  e. 
NN0 )  ->  ( G `  ( `' G `  ( f `  x ) ) )  =  ( f `  x ) )
6846, 57, 67sylancr 414 . . . . . . . . 9  |-  ( ( ( ( A  e.  V  /\  A. g  e.  ( 2o  ^m  A
)DECID  A. x  e.  A  ( g `  x
)  =  1o )  /\  f  e.  ( { 0 ,  1 }  ^m  A ) )  /\  x  e.  A )  ->  ( G `  ( `' G `  ( f `  x ) ) )  =  ( f `  x ) )
6968eqeq1d 2202 . . . . . . . 8  |-  ( ( ( ( A  e.  V  /\  A. g  e.  ( 2o  ^m  A
)DECID  A. x  e.  A  ( g `  x
)  =  1o )  /\  f  e.  ( { 0 ,  1 }  ^m  A ) )  /\  x  e.  A )  ->  (
( G `  ( `' G `  ( f `
 x ) ) )  =  1  <->  (
f `  x )  =  1 ) )
7031, 66, 693bitr2d 216 . . . . . . 7  |-  ( ( ( ( A  e.  V  /\  A. g  e.  ( 2o  ^m  A
)DECID  A. x  e.  A  ( g `  x
)  =  1o )  /\  f  e.  ( { 0 ,  1 }  ^m  A ) )  /\  x  e.  A )  ->  (
( ( `' G  o.  f ) `  x
)  =  1o  <->  ( f `  x )  =  1 ) )
7127, 70ralbida 2488 . . . . . 6  |-  ( ( ( A  e.  V  /\  A. g  e.  ( 2o  ^m  A )DECID  A. x  e.  A  (
g `  x )  =  1o )  /\  f  e.  ( { 0 ,  1 }  ^m  A
) )  ->  ( A. x  e.  A  ( ( `' G  o.  f ) `  x
)  =  1o  <->  A. x  e.  A  ( f `  x )  =  1 ) )
7271dcbid 839 . . . . 5  |-  ( ( ( A  e.  V  /\  A. g  e.  ( 2o  ^m  A )DECID  A. x  e.  A  (
g `  x )  =  1o )  /\  f  e.  ( { 0 ,  1 }  ^m  A
) )  ->  (DECID  A. x  e.  A  (
( `' G  o.  f ) `  x
)  =  1o  <-> DECID  A. x  e.  A  ( f `  x
)  =  1 ) )
7319, 72mpbid 147 . . . 4  |-  ( ( ( A  e.  V  /\  A. g  e.  ( 2o  ^m  A )DECID  A. x  e.  A  (
g `  x )  =  1o )  /\  f  e.  ( { 0 ,  1 }  ^m  A
) )  -> DECID  A. x  e.  A  ( f `  x
)  =  1 )
7473ralrimiva 2567 . . 3  |-  ( ( A  e.  V  /\  A. g  e.  ( 2o 
^m  A )DECID  A. x  e.  A  ( g `  x )  =  1o )  ->  A. f  e.  ( { 0 ,  1 }  ^m  A
)DECID  A. x  e.  A  ( f `  x
)  =  1 )
75 fveq1 5553 . . . . . . . . 9  |-  ( f  =  ( G  o.  g )  ->  (
f `  x )  =  ( ( G  o.  g ) `  x ) )
7675eqeq1d 2202 . . . . . . . 8  |-  ( f  =  ( G  o.  g )  ->  (
( f `  x
)  =  1  <->  (
( G  o.  g
) `  x )  =  1 ) )
7776ralbidv 2494 . . . . . . 7  |-  ( f  =  ( G  o.  g )  ->  ( A. x  e.  A  ( f `  x
)  =  1  <->  A. x  e.  A  (
( G  o.  g
) `  x )  =  1 ) )
7877dcbid 839 . . . . . 6  |-  ( f  =  ( G  o.  g )  ->  (DECID  A. x  e.  A  (
f `  x )  =  1  <-> DECID  A. x  e.  A  ( ( G  o.  g ) `  x
)  =  1 ) )
79 simplr 528 . . . . . 6  |-  ( ( ( A  e.  V  /\  A. f  e.  ( { 0 ,  1 }  ^m  A )DECID  A. x  e.  A  (
f `  x )  =  1 )  /\  g  e.  ( 2o  ^m  A ) )  ->  A. f  e.  ( { 0 ,  1 }  ^m  A )DECID  A. x  e.  A  (
f `  x )  =  1 )
8072o01f 15487 . . . . . . . 8  |-  ( G  |`  2o ) : 2o --> { 0 ,  1 }
81 elmapi 6724 . . . . . . . . 9  |-  ( g  e.  ( 2o  ^m  A )  ->  g : A --> 2o )
8281adantl 277 . . . . . . . 8  |-  ( ( ( A  e.  V  /\  A. f  e.  ( { 0 ,  1 }  ^m  A )DECID  A. x  e.  A  (
f `  x )  =  1 )  /\  g  e.  ( 2o  ^m  A ) )  -> 
g : A --> 2o )
83 fco2 5420 . . . . . . . 8  |-  ( ( ( G  |`  2o ) : 2o --> { 0 ,  1 }  /\  g : A --> 2o )  ->  ( G  o.  g ) : A --> { 0 ,  1 } )
8480, 82, 83sylancr 414 . . . . . . 7  |-  ( ( ( A  e.  V  /\  A. f  e.  ( { 0 ,  1 }  ^m  A )DECID  A. x  e.  A  (
f `  x )  =  1 )  /\  g  e.  ( 2o  ^m  A ) )  -> 
( G  o.  g
) : A --> { 0 ,  1 } )
85 prexg 4240 . . . . . . . . . 10  |-  ( ( 0  e.  NN0  /\  1  e.  NN0 )  ->  { 0 ,  1 }  e.  _V )
8651, 52, 85mp2an 426 . . . . . . . . 9  |-  { 0 ,  1 }  e.  _V
8786a1i 9 . . . . . . . 8  |-  ( ( ( A  e.  V  /\  A. f  e.  ( { 0 ,  1 }  ^m  A )DECID  A. x  e.  A  (
f `  x )  =  1 )  /\  g  e.  ( 2o  ^m  A ) )  ->  { 0 ,  1 }  e.  _V )
88 simpll 527 . . . . . . . 8  |-  ( ( ( A  e.  V  /\  A. f  e.  ( { 0 ,  1 }  ^m  A )DECID  A. x  e.  A  (
f `  x )  =  1 )  /\  g  e.  ( 2o  ^m  A ) )  ->  A  e.  V )
8987, 88elmapd 6716 . . . . . . 7  |-  ( ( ( A  e.  V  /\  A. f  e.  ( { 0 ,  1 }  ^m  A )DECID  A. x  e.  A  (
f `  x )  =  1 )  /\  g  e.  ( 2o  ^m  A ) )  -> 
( ( G  o.  g )  e.  ( { 0 ,  1 }  ^m  A )  <-> 
( G  o.  g
) : A --> { 0 ,  1 } ) )
9084, 89mpbird 167 . . . . . 6  |-  ( ( ( A  e.  V  /\  A. f  e.  ( { 0 ,  1 }  ^m  A )DECID  A. x  e.  A  (
f `  x )  =  1 )  /\  g  e.  ( 2o  ^m  A ) )  -> 
( G  o.  g
)  e.  ( { 0 ,  1 }  ^m  A ) )
9178, 79, 90rspcdva 2869 . . . . 5  |-  ( ( ( A  e.  V  /\  A. f  e.  ( { 0 ,  1 }  ^m  A )DECID  A. x  e.  A  (
f `  x )  =  1 )  /\  g  e.  ( 2o  ^m  A ) )  -> DECID  A. x  e.  A  ( ( G  o.  g ) `  x )  =  1 )
92 nfcv 2336 . . . . . . . . . 10  |-  F/_ x
( { 0 ,  1 }  ^m  A
)
93 nfra1 2525 . . . . . . . . . . 11  |-  F/ x A. x  e.  A  ( f `  x
)  =  1
9493nfdc 1670 . . . . . . . . . 10  |-  F/ xDECID  A. x  e.  A  ( f `  x )  =  1
9592, 94nfralxy 2532 . . . . . . . . 9  |-  F/ x A. f  e.  ( { 0 ,  1 }  ^m  A )DECID  A. x  e.  A  (
f `  x )  =  1
9620, 95nfan 1576 . . . . . . . 8  |-  F/ x
( A  e.  V  /\  A. f  e.  ( { 0 ,  1 }  ^m  A )DECID  A. x  e.  A  (
f `  x )  =  1 )
97 nfv 1539 . . . . . . . 8  |-  F/ x  g  e.  ( 2o  ^m  A )
9896, 97nfan 1576 . . . . . . 7  |-  F/ x
( ( A  e.  V  /\  A. f  e.  ( { 0 ,  1 }  ^m  A
)DECID  A. x  e.  A  ( f `  x
)  =  1 )  /\  g  e.  ( 2o  ^m  A ) )
9981ad2antlr 489 . . . . . . . . . 10  |-  ( ( ( ( A  e.  V  /\  A. f  e.  ( { 0 ,  1 }  ^m  A
)DECID  A. x  e.  A  ( f `  x
)  =  1 )  /\  g  e.  ( 2o  ^m  A ) )  /\  x  e.  A )  ->  g : A --> 2o )
100 fvco3 5628 . . . . . . . . . 10  |-  ( ( g : A --> 2o  /\  x  e.  A )  ->  ( ( G  o.  g ) `  x
)  =  ( G `
 ( g `  x ) ) )
10199, 100sylancom 420 . . . . . . . . 9  |-  ( ( ( ( A  e.  V  /\  A. f  e.  ( { 0 ,  1 }  ^m  A
)DECID  A. x  e.  A  ( f `  x
)  =  1 )  /\  g  e.  ( 2o  ^m  A ) )  /\  x  e.  A )  ->  (
( G  o.  g
) `  x )  =  ( G `  ( g `  x
) ) )
102101eqeq1d 2202 . . . . . . . 8  |-  ( ( ( ( A  e.  V  /\  A. f  e.  ( { 0 ,  1 }  ^m  A
)DECID  A. x  e.  A  ( f `  x
)  =  1 )  /\  g  e.  ( 2o  ^m  A ) )  /\  x  e.  A )  ->  (
( ( G  o.  g ) `  x
)  =  1  <->  ( G `  ( g `  x ) )  =  1 ) )
103 f1of 5500 . . . . . . . . . . 11  |-  ( G : om -1-1-onto-> NN0  ->  G : om
--> NN0 )
10446, 103mp1i 10 . . . . . . . . . 10  |-  ( ( ( ( A  e.  V  /\  A. f  e.  ( { 0 ,  1 }  ^m  A
)DECID  A. x  e.  A  ( f `  x
)  =  1 )  /\  g  e.  ( 2o  ^m  A ) )  /\  x  e.  A )  ->  G : om --> NN0 )
105 omelon 4641 . . . . . . . . . . . . . 14  |-  om  e.  On
106105onelssi 4460 . . . . . . . . . . . . 13  |-  ( 2o  e.  om  ->  2o  C_ 
om )
10713, 106mp1i 10 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  V  /\  A. f  e.  ( { 0 ,  1 }  ^m  A
)DECID  A. x  e.  A  ( f `  x
)  =  1 )  /\  g  e.  ( 2o  ^m  A ) )  /\  x  e.  A )  ->  2o  C_ 
om )
10899, 107fssd 5416 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  V  /\  A. f  e.  ( { 0 ,  1 }  ^m  A
)DECID  A. x  e.  A  ( f `  x
)  =  1 )  /\  g  e.  ( 2o  ^m  A ) )  /\  x  e.  A )  ->  g : A --> om )
109 simpr 110 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  V  /\  A. f  e.  ( { 0 ,  1 }  ^m  A
)DECID  A. x  e.  A  ( f `  x
)  =  1 )  /\  g  e.  ( 2o  ^m  A ) )  /\  x  e.  A )  ->  x  e.  A )
110108, 109ffvelcdmd 5694 . . . . . . . . . 10  |-  ( ( ( ( A  e.  V  /\  A. f  e.  ( { 0 ,  1 }  ^m  A
)DECID  A. x  e.  A  ( f `  x
)  =  1 )  /\  g  e.  ( 2o  ^m  A ) )  /\  x  e.  A )  ->  (
g `  x )  e.  om )
111104, 110ffvelcdmd 5694 . . . . . . . . 9  |-  ( ( ( ( A  e.  V  /\  A. f  e.  ( { 0 ,  1 }  ^m  A
)DECID  A. x  e.  A  ( f `  x
)  =  1 )  /\  g  e.  ( 2o  ^m  A ) )  /\  x  e.  A )  ->  ( G `  ( g `  x ) )  e. 
NN0 )
112 f1ocnvfv 5822 . . . . . . . . . . . . 13  |-  ( ( G : om -1-1-onto-> NN0  /\  1o  e.  om )  ->  ( ( G `  1o )  =  1  ->  ( `' G `  1 )  =  1o ) )
11346, 59, 112mp2an 426 . . . . . . . . . . . 12  |-  ( ( G `  1o )  =  1  ->  ( `' G `  1 )  =  1o )
11444, 113ax-mp 5 . . . . . . . . . . 11  |-  ( `' G `  1 )  =  1o
115114eqeq2i 2204 . . . . . . . . . 10  |-  ( ( `' G `  ( G `
 ( g `  x ) ) )  =  ( `' G `  1 )  <->  ( `' G `  ( G `  ( g `  x
) ) )  =  1o )
116 f1of1 5499 . . . . . . . . . . . . 13  |-  ( `' G : NN0 -1-1-onto-> om  ->  `' G : NN0 -1-1-> om )
11746, 47, 116mp2b 8 . . . . . . . . . . . 12  |-  `' G : NN0 -1-1-> om
118 f1fveq 5815 . . . . . . . . . . . 12  |-  ( ( `' G : NN0 -1-1-> om  /\  ( ( G `  ( g `  x
) )  e.  NN0  /\  1  e.  NN0 )
)  ->  ( ( `' G `  ( G `
 ( g `  x ) ) )  =  ( `' G `  1 )  <->  ( G `  ( g `  x
) )  =  1 ) )
119117, 118mpan 424 . . . . . . . . . . 11  |-  ( ( ( G `  (
g `  x )
)  e.  NN0  /\  1  e.  NN0 )  -> 
( ( `' G `  ( G `  (
g `  x )
) )  =  ( `' G `  1 )  <-> 
( G `  (
g `  x )
)  =  1 ) )
12052, 119mpan2 425 . . . . . . . . . 10  |-  ( ( G `  ( g `
 x ) )  e.  NN0  ->  ( ( `' G `  ( G `
 ( g `  x ) ) )  =  ( `' G `  1 )  <->  ( G `  ( g `  x
) )  =  1 ) )
121115, 120bitr3id 194 . . . . . . . . 9  |-  ( ( G `  ( g `
 x ) )  e.  NN0  ->  ( ( `' G `  ( G `
 ( g `  x ) ) )  =  1o  <->  ( G `  ( g `  x
) )  =  1 ) )
122111, 121syl 14 . . . . . . . 8  |-  ( ( ( ( A  e.  V  /\  A. f  e.  ( { 0 ,  1 }  ^m  A
)DECID  A. x  e.  A  ( f `  x
)  =  1 )  /\  g  e.  ( 2o  ^m  A ) )  /\  x  e.  A )  ->  (
( `' G `  ( G `  ( g `
 x ) ) )  =  1o  <->  ( G `  ( g `  x
) )  =  1 ) )
123 f1ocnvfv1 5820 . . . . . . . . . 10  |-  ( ( G : om -1-1-onto-> NN0  /\  ( g `
 x )  e. 
om )  ->  ( `' G `  ( G `
 ( g `  x ) ) )  =  ( g `  x ) )
12446, 110, 123sylancr 414 . . . . . . . . 9  |-  ( ( ( ( A  e.  V  /\  A. f  e.  ( { 0 ,  1 }  ^m  A
)DECID  A. x  e.  A  ( f `  x
)  =  1 )  /\  g  e.  ( 2o  ^m  A ) )  /\  x  e.  A )  ->  ( `' G `  ( G `
 ( g `  x ) ) )  =  ( g `  x ) )
125124eqeq1d 2202 . . . . . . . 8  |-  ( ( ( ( A  e.  V  /\  A. f  e.  ( { 0 ,  1 }  ^m  A
)DECID  A. x  e.  A  ( f `  x
)  =  1 )  /\  g  e.  ( 2o  ^m  A ) )  /\  x  e.  A )  ->  (
( `' G `  ( G `  ( g `
 x ) ) )  =  1o  <->  ( g `  x )  =  1o ) )
126102, 122, 1253bitr2d 216 . . . . . . 7  |-  ( ( ( ( A  e.  V  /\  A. f  e.  ( { 0 ,  1 }  ^m  A
)DECID  A. x  e.  A  ( f `  x
)  =  1 )  /\  g  e.  ( 2o  ^m  A ) )  /\  x  e.  A )  ->  (
( ( G  o.  g ) `  x
)  =  1  <->  (
g `  x )  =  1o ) )
12798, 126ralbida 2488 . . . . . 6  |-  ( ( ( A  e.  V  /\  A. f  e.  ( { 0 ,  1 }  ^m  A )DECID  A. x  e.  A  (
f `  x )  =  1 )  /\  g  e.  ( 2o  ^m  A ) )  -> 
( A. x  e.  A  ( ( G  o.  g ) `  x )  =  1  <->  A. x  e.  A  ( g `  x
)  =  1o ) )
128127dcbid 839 . . . . 5  |-  ( ( ( A  e.  V  /\  A. f  e.  ( { 0 ,  1 }  ^m  A )DECID  A. x  e.  A  (
f `  x )  =  1 )  /\  g  e.  ( 2o  ^m  A ) )  -> 
(DECID  A. x  e.  A  ( ( G  o.  g ) `  x
)  =  1  <-> DECID  A. x  e.  A  ( g `  x )  =  1o ) )
12991, 128mpbid 147 . . . 4  |-  ( ( ( A  e.  V  /\  A. f  e.  ( { 0 ,  1 }  ^m  A )DECID  A. x  e.  A  (
f `  x )  =  1 )  /\  g  e.  ( 2o  ^m  A ) )  -> DECID  A. x  e.  A  ( g `  x )  =  1o )
130129ralrimiva 2567 . . 3  |-  ( ( A  e.  V  /\  A. f  e.  ( { 0 ,  1 }  ^m  A )DECID  A. x  e.  A  ( f `  x )  =  1 )  ->  A. g  e.  ( 2o  ^m  A
)DECID  A. x  e.  A  ( g `  x
)  =  1o )
13174, 130impbida 596 . 2  |-  ( A  e.  V  ->  ( A. g  e.  ( 2o  ^m  A )DECID  A. x  e.  A  ( g `  x )  =  1o  <->  A. f  e.  ( { 0 ,  1 }  ^m  A )DECID  A. x  e.  A  ( f `  x )  =  1 ) )
1321, 131bitrd 188 1  |-  ( A  e.  V  ->  ( A  e. WOmni  <->  A. f  e.  ( { 0 ,  1 }  ^m  A )DECID  A. x  e.  A  (
f `  x )  =  1 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105  DECID wdc 835    = wceq 1364   T. wtru 1365    e. wcel 2164   A.wral 2472   _Vcvv 2760    C_ wss 3153   (/)c0 3446   {cpr 3619    |-> cmpt 4090   suc csuc 4396   omcom 4622   `'ccnv 4658    |` cres 4661    o. ccom 4663   -->wf 5250   -1-1->wf1 5251   -1-1-onto->wf1o 5253   ` cfv 5254  (class class class)co 5918  freccfrec 6443   1oc1o 6462   2oc2o 6463    ^m cmap 6702  WOmnicwomni 7222   0cc0 7872   1c1 7873    + caddc 7875   NN0cn0 9240   ZZcz 9317
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-0id 7980  ax-rnegex 7981  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-ltadd 7988
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-recs 6358  df-frec 6444  df-1o 6469  df-2o 6470  df-map 6704  df-womni 7223  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-inn 8983  df-n0 9241  df-z 9318  df-uz 9593
This theorem is referenced by:  iswomninn  15540
  Copyright terms: Public domain W3C validator