Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  iswomninnlem Unicode version

Theorem iswomninnlem 16062
Description: Lemma for iswomnimap 7275. The result, with a hypothesis for convenience. (Contributed by Jim Kingdon, 20-Jun-2024.)
Hypothesis
Ref Expression
iswomninnlem.g  |-  G  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  0 )
Assertion
Ref Expression
iswomninnlem  |-  ( A  e.  V  ->  ( A  e. WOmni  <->  A. f  e.  ( { 0 ,  1 }  ^m  A )DECID  A. x  e.  A  (
f `  x )  =  1 ) )
Distinct variable groups:    A, f, x   
f, G, x    f, V, x

Proof of Theorem iswomninnlem
Dummy variable  g is distinct from all other variables.
StepHypRef Expression
1 iswomnimap 7275 . 2  |-  ( A  e.  V  ->  ( A  e. WOmni  <->  A. g  e.  ( 2o  ^m  A )DECID  A. x  e.  A  (
g `  x )  =  1o ) )
2 fveq1 5582 . . . . . . . . 9  |-  ( g  =  ( `' G  o.  f )  ->  (
g `  x )  =  ( ( `' G  o.  f ) `
 x ) )
32eqeq1d 2215 . . . . . . . 8  |-  ( g  =  ( `' G  o.  f )  ->  (
( g `  x
)  =  1o  <->  ( ( `' G  o.  f
) `  x )  =  1o ) )
43ralbidv 2507 . . . . . . 7  |-  ( g  =  ( `' G  o.  f )  ->  ( A. x  e.  A  ( g `  x
)  =  1o  <->  A. x  e.  A  ( ( `' G  o.  f
) `  x )  =  1o ) )
54dcbid 840 . . . . . 6  |-  ( g  =  ( `' G  o.  f )  ->  (DECID  A. x  e.  A  (
g `  x )  =  1o  <-> DECID  A. x  e.  A  ( ( `' G  o.  f ) `  x
)  =  1o ) )
6 simplr 528 . . . . . 6  |-  ( ( ( A  e.  V  /\  A. g  e.  ( 2o  ^m  A )DECID  A. x  e.  A  (
g `  x )  =  1o )  /\  f  e.  ( { 0 ,  1 }  ^m  A
) )  ->  A. g  e.  ( 2o  ^m  A
)DECID  A. x  e.  A  ( g `  x
)  =  1o )
7 iswomninnlem.g . . . . . . . . . . 11  |-  G  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  0 )
87012of 16004 . . . . . . . . . 10  |-  ( `' G  |`  { 0 ,  1 } ) : { 0 ,  1 } --> 2o
9 elmapi 6764 . . . . . . . . . 10  |-  ( f  e.  ( { 0 ,  1 }  ^m  A )  ->  f : A --> { 0 ,  1 } )
10 fco2 5448 . . . . . . . . . 10  |-  ( ( ( `' G  |`  { 0 ,  1 } ) : {
0 ,  1 } --> 2o  /\  f : A --> { 0 ,  1 } )  -> 
( `' G  o.  f ) : A --> 2o )
118, 9, 10sylancr 414 . . . . . . . . 9  |-  ( f  e.  ( { 0 ,  1 }  ^m  A )  ->  ( `' G  o.  f
) : A --> 2o )
1211adantl 277 . . . . . . . 8  |-  ( ( A  e.  V  /\  f  e.  ( {
0 ,  1 }  ^m  A ) )  ->  ( `' G  o.  f ) : A --> 2o )
13 2onn 6614 . . . . . . . . . 10  |-  2o  e.  om
1413a1i 9 . . . . . . . . 9  |-  ( ( A  e.  V  /\  f  e.  ( {
0 ,  1 }  ^m  A ) )  ->  2o  e.  om )
15 simpl 109 . . . . . . . . 9  |-  ( ( A  e.  V  /\  f  e.  ( {
0 ,  1 }  ^m  A ) )  ->  A  e.  V
)
1614, 15elmapd 6756 . . . . . . . 8  |-  ( ( A  e.  V  /\  f  e.  ( {
0 ,  1 }  ^m  A ) )  ->  ( ( `' G  o.  f )  e.  ( 2o  ^m  A )  <->  ( `' G  o.  f ) : A --> 2o ) )
1712, 16mpbird 167 . . . . . . 7  |-  ( ( A  e.  V  /\  f  e.  ( {
0 ,  1 }  ^m  A ) )  ->  ( `' G  o.  f )  e.  ( 2o  ^m  A ) )
1817adantlr 477 . . . . . 6  |-  ( ( ( A  e.  V  /\  A. g  e.  ( 2o  ^m  A )DECID  A. x  e.  A  (
g `  x )  =  1o )  /\  f  e.  ( { 0 ,  1 }  ^m  A
) )  ->  ( `' G  o.  f
)  e.  ( 2o 
^m  A ) )
195, 6, 18rspcdva 2883 . . . . 5  |-  ( ( ( A  e.  V  /\  A. g  e.  ( 2o  ^m  A )DECID  A. x  e.  A  (
g `  x )  =  1o )  /\  f  e.  ( { 0 ,  1 }  ^m  A
) )  -> DECID  A. x  e.  A  ( ( `' G  o.  f ) `  x
)  =  1o )
20 nfv 1552 . . . . . . . . 9  |-  F/ x  A  e.  V
21 nfcv 2349 . . . . . . . . . 10  |-  F/_ x
( 2o  ^m  A
)
22 nfra1 2538 . . . . . . . . . . 11  |-  F/ x A. x  e.  A  ( g `  x
)  =  1o
2322nfdc 1683 . . . . . . . . . 10  |-  F/ xDECID  A. x  e.  A  ( g `  x )  =  1o
2421, 23nfralxy 2545 . . . . . . . . 9  |-  F/ x A. g  e.  ( 2o  ^m  A )DECID  A. x  e.  A  ( g `  x )  =  1o
2520, 24nfan 1589 . . . . . . . 8  |-  F/ x
( A  e.  V  /\  A. g  e.  ( 2o  ^m  A )DECID  A. x  e.  A  (
g `  x )  =  1o )
26 nfv 1552 . . . . . . . 8  |-  F/ x  f  e.  ( {
0 ,  1 }  ^m  A )
2725, 26nfan 1589 . . . . . . 7  |-  F/ x
( ( A  e.  V  /\  A. g  e.  ( 2o  ^m  A
)DECID  A. x  e.  A  ( g `  x
)  =  1o )  /\  f  e.  ( { 0 ,  1 }  ^m  A ) )
289ad2antlr 489 . . . . . . . . . 10  |-  ( ( ( ( A  e.  V  /\  A. g  e.  ( 2o  ^m  A
)DECID  A. x  e.  A  ( g `  x
)  =  1o )  /\  f  e.  ( { 0 ,  1 }  ^m  A ) )  /\  x  e.  A )  ->  f : A --> { 0 ,  1 } )
29 fvco3 5657 . . . . . . . . . 10  |-  ( ( f : A --> { 0 ,  1 }  /\  x  e.  A )  ->  ( ( `' G  o.  f ) `  x
)  =  ( `' G `  ( f `
 x ) ) )
3028, 29sylancom 420 . . . . . . . . 9  |-  ( ( ( ( A  e.  V  /\  A. g  e.  ( 2o  ^m  A
)DECID  A. x  e.  A  ( g `  x
)  =  1o )  /\  f  e.  ( { 0 ,  1 }  ^m  A ) )  /\  x  e.  A )  ->  (
( `' G  o.  f ) `  x
)  =  ( `' G `  ( f `
 x ) ) )
3130eqeq1d 2215 . . . . . . . 8  |-  ( ( ( ( A  e.  V  /\  A. g  e.  ( 2o  ^m  A
)DECID  A. x  e.  A  ( g `  x
)  =  1o )  /\  f  e.  ( { 0 ,  1 }  ^m  A ) )  /\  x  e.  A )  ->  (
( ( `' G  o.  f ) `  x
)  =  1o  <->  ( `' G `  ( f `  x ) )  =  1o ) )
32 df-1o 6509 . . . . . . . . . . . 12  |-  1o  =  suc  (/)
3332fveq2i 5586 . . . . . . . . . . 11  |-  ( G `
 1o )  =  ( G `  suc  (/) )
34 0zd 9391 . . . . . . . . . . . . 13  |-  ( T. 
->  0  e.  ZZ )
35 peano1 4646 . . . . . . . . . . . . . 14  |-  (/)  e.  om
3635a1i 9 . . . . . . . . . . . . 13  |-  ( T. 
->  (/)  e.  om )
3734, 7, 36frec2uzsucd 10553 . . . . . . . . . . . 12  |-  ( T. 
->  ( G `  suc  (/) )  =  ( ( G `  (/) )  +  1 ) )
3837mptru 1382 . . . . . . . . . . 11  |-  ( G `
 suc  (/) )  =  ( ( G `  (/) )  +  1 )
3934, 7frec2uz0d 10551 . . . . . . . . . . . . . 14  |-  ( T. 
->  ( G `  (/) )  =  0 )
4039mptru 1382 . . . . . . . . . . . . 13  |-  ( G `
 (/) )  =  0
4140oveq1i 5961 . . . . . . . . . . . 12  |-  ( ( G `  (/) )  +  1 )  =  ( 0  +  1 )
42 0p1e1 9157 . . . . . . . . . . . 12  |-  ( 0  +  1 )  =  1
4341, 42eqtri 2227 . . . . . . . . . . 11  |-  ( ( G `  (/) )  +  1 )  =  1
4433, 38, 433eqtri 2231 . . . . . . . . . 10  |-  ( G `
 1o )  =  1
4544eqeq2i 2217 . . . . . . . . 9  |-  ( ( G `  ( `' G `  ( f `
 x ) ) )  =  ( G `
 1o )  <->  ( G `  ( `' G `  ( f `  x
) ) )  =  1 )
467frechashgf1o 10580 . . . . . . . . . . . . 13  |-  G : om
-1-1-onto-> NN0
47 f1ocnv 5542 . . . . . . . . . . . . 13  |-  ( G : om -1-1-onto-> NN0  ->  `' G : NN0
-1-1-onto-> om )
48 f1of 5529 . . . . . . . . . . . . 13  |-  ( `' G : NN0 -1-1-onto-> om  ->  `' G : NN0 --> om )
4946, 47, 48mp2b 8 . . . . . . . . . . . 12  |-  `' G : NN0 --> om
5049a1i 9 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  V  /\  A. g  e.  ( 2o  ^m  A
)DECID  A. x  e.  A  ( g `  x
)  =  1o )  /\  f  e.  ( { 0 ,  1 }  ^m  A ) )  /\  x  e.  A )  ->  `' G : NN0 --> om )
51 0nn0 9317 . . . . . . . . . . . . 13  |-  0  e.  NN0
52 1nn0 9318 . . . . . . . . . . . . 13  |-  1  e.  NN0
53 prssi 3793 . . . . . . . . . . . . 13  |-  ( ( 0  e.  NN0  /\  1  e.  NN0 )  ->  { 0 ,  1 }  C_  NN0 )
5451, 52, 53mp2an 426 . . . . . . . . . . . 12  |-  { 0 ,  1 }  C_  NN0
55 simpr 110 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  V  /\  A. g  e.  ( 2o  ^m  A
)DECID  A. x  e.  A  ( g `  x
)  =  1o )  /\  f  e.  ( { 0 ,  1 }  ^m  A ) )  /\  x  e.  A )  ->  x  e.  A )
5628, 55ffvelcdmd 5723 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  V  /\  A. g  e.  ( 2o  ^m  A
)DECID  A. x  e.  A  ( g `  x
)  =  1o )  /\  f  e.  ( { 0 ,  1 }  ^m  A ) )  /\  x  e.  A )  ->  (
f `  x )  e.  { 0 ,  1 } )
5754, 56sselid 3192 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  V  /\  A. g  e.  ( 2o  ^m  A
)DECID  A. x  e.  A  ( g `  x
)  =  1o )  /\  f  e.  ( { 0 ,  1 }  ^m  A ) )  /\  x  e.  A )  ->  (
f `  x )  e.  NN0 )
5850, 57ffvelcdmd 5723 . . . . . . . . . 10  |-  ( ( ( ( A  e.  V  /\  A. g  e.  ( 2o  ^m  A
)DECID  A. x  e.  A  ( g `  x
)  =  1o )  /\  f  e.  ( { 0 ,  1 }  ^m  A ) )  /\  x  e.  A )  ->  ( `' G `  ( f `
 x ) )  e.  om )
59 1onn 6613 . . . . . . . . . . 11  |-  1o  e.  om
60 f1of1 5528 . . . . . . . . . . . . 13  |-  ( G : om -1-1-onto-> NN0  ->  G : om
-1-1-> NN0 )
6146, 60ax-mp 5 . . . . . . . . . . . 12  |-  G : om
-1-1-> NN0
62 f1fveq 5848 . . . . . . . . . . . 12  |-  ( ( G : om -1-1-> NN0  /\  ( ( `' G `  ( f `  x
) )  e.  om  /\  1o  e.  om )
)  ->  ( ( G `  ( `' G `  ( f `  x ) ) )  =  ( G `  1o )  <->  ( `' G `  ( f `  x
) )  =  1o ) )
6361, 62mpan 424 . . . . . . . . . . 11  |-  ( ( ( `' G `  ( f `  x
) )  e.  om  /\  1o  e.  om )  ->  ( ( G `  ( `' G `  ( f `
 x ) ) )  =  ( G `
 1o )  <->  ( `' G `  ( f `  x ) )  =  1o ) )
6459, 63mpan2 425 . . . . . . . . . 10  |-  ( ( `' G `  ( f `
 x ) )  e.  om  ->  (
( G `  ( `' G `  ( f `
 x ) ) )  =  ( G `
 1o )  <->  ( `' G `  ( f `  x ) )  =  1o ) )
6558, 64syl 14 . . . . . . . . 9  |-  ( ( ( ( A  e.  V  /\  A. g  e.  ( 2o  ^m  A
)DECID  A. x  e.  A  ( g `  x
)  =  1o )  /\  f  e.  ( { 0 ,  1 }  ^m  A ) )  /\  x  e.  A )  ->  (
( G `  ( `' G `  ( f `
 x ) ) )  =  ( G `
 1o )  <->  ( `' G `  ( f `  x ) )  =  1o ) )
6645, 65bitr3id 194 . . . . . . . 8  |-  ( ( ( ( A  e.  V  /\  A. g  e.  ( 2o  ^m  A
)DECID  A. x  e.  A  ( g `  x
)  =  1o )  /\  f  e.  ( { 0 ,  1 }  ^m  A ) )  /\  x  e.  A )  ->  (
( G `  ( `' G `  ( f `
 x ) ) )  =  1  <->  ( `' G `  ( f `
 x ) )  =  1o ) )
67 f1ocnvfv2 5854 . . . . . . . . . 10  |-  ( ( G : om -1-1-onto-> NN0  /\  ( f `
 x )  e. 
NN0 )  ->  ( G `  ( `' G `  ( f `  x ) ) )  =  ( f `  x ) )
6846, 57, 67sylancr 414 . . . . . . . . 9  |-  ( ( ( ( A  e.  V  /\  A. g  e.  ( 2o  ^m  A
)DECID  A. x  e.  A  ( g `  x
)  =  1o )  /\  f  e.  ( { 0 ,  1 }  ^m  A ) )  /\  x  e.  A )  ->  ( G `  ( `' G `  ( f `  x ) ) )  =  ( f `  x ) )
6968eqeq1d 2215 . . . . . . . 8  |-  ( ( ( ( A  e.  V  /\  A. g  e.  ( 2o  ^m  A
)DECID  A. x  e.  A  ( g `  x
)  =  1o )  /\  f  e.  ( { 0 ,  1 }  ^m  A ) )  /\  x  e.  A )  ->  (
( G `  ( `' G `  ( f `
 x ) ) )  =  1  <->  (
f `  x )  =  1 ) )
7031, 66, 693bitr2d 216 . . . . . . 7  |-  ( ( ( ( A  e.  V  /\  A. g  e.  ( 2o  ^m  A
)DECID  A. x  e.  A  ( g `  x
)  =  1o )  /\  f  e.  ( { 0 ,  1 }  ^m  A ) )  /\  x  e.  A )  ->  (
( ( `' G  o.  f ) `  x
)  =  1o  <->  ( f `  x )  =  1 ) )
7127, 70ralbida 2501 . . . . . 6  |-  ( ( ( A  e.  V  /\  A. g  e.  ( 2o  ^m  A )DECID  A. x  e.  A  (
g `  x )  =  1o )  /\  f  e.  ( { 0 ,  1 }  ^m  A
) )  ->  ( A. x  e.  A  ( ( `' G  o.  f ) `  x
)  =  1o  <->  A. x  e.  A  ( f `  x )  =  1 ) )
7271dcbid 840 . . . . 5  |-  ( ( ( A  e.  V  /\  A. g  e.  ( 2o  ^m  A )DECID  A. x  e.  A  (
g `  x )  =  1o )  /\  f  e.  ( { 0 ,  1 }  ^m  A
) )  ->  (DECID  A. x  e.  A  (
( `' G  o.  f ) `  x
)  =  1o  <-> DECID  A. x  e.  A  ( f `  x
)  =  1 ) )
7319, 72mpbid 147 . . . 4  |-  ( ( ( A  e.  V  /\  A. g  e.  ( 2o  ^m  A )DECID  A. x  e.  A  (
g `  x )  =  1o )  /\  f  e.  ( { 0 ,  1 }  ^m  A
) )  -> DECID  A. x  e.  A  ( f `  x
)  =  1 )
7473ralrimiva 2580 . . 3  |-  ( ( A  e.  V  /\  A. g  e.  ( 2o 
^m  A )DECID  A. x  e.  A  ( g `  x )  =  1o )  ->  A. f  e.  ( { 0 ,  1 }  ^m  A
)DECID  A. x  e.  A  ( f `  x
)  =  1 )
75 fveq1 5582 . . . . . . . . 9  |-  ( f  =  ( G  o.  g )  ->  (
f `  x )  =  ( ( G  o.  g ) `  x ) )
7675eqeq1d 2215 . . . . . . . 8  |-  ( f  =  ( G  o.  g )  ->  (
( f `  x
)  =  1  <->  (
( G  o.  g
) `  x )  =  1 ) )
7776ralbidv 2507 . . . . . . 7  |-  ( f  =  ( G  o.  g )  ->  ( A. x  e.  A  ( f `  x
)  =  1  <->  A. x  e.  A  (
( G  o.  g
) `  x )  =  1 ) )
7877dcbid 840 . . . . . 6  |-  ( f  =  ( G  o.  g )  ->  (DECID  A. x  e.  A  (
f `  x )  =  1  <-> DECID  A. x  e.  A  ( ( G  o.  g ) `  x
)  =  1 ) )
79 simplr 528 . . . . . 6  |-  ( ( ( A  e.  V  /\  A. f  e.  ( { 0 ,  1 }  ^m  A )DECID  A. x  e.  A  (
f `  x )  =  1 )  /\  g  e.  ( 2o  ^m  A ) )  ->  A. f  e.  ( { 0 ,  1 }  ^m  A )DECID  A. x  e.  A  (
f `  x )  =  1 )
8072o01f 16005 . . . . . . . 8  |-  ( G  |`  2o ) : 2o --> { 0 ,  1 }
81 elmapi 6764 . . . . . . . . 9  |-  ( g  e.  ( 2o  ^m  A )  ->  g : A --> 2o )
8281adantl 277 . . . . . . . 8  |-  ( ( ( A  e.  V  /\  A. f  e.  ( { 0 ,  1 }  ^m  A )DECID  A. x  e.  A  (
f `  x )  =  1 )  /\  g  e.  ( 2o  ^m  A ) )  -> 
g : A --> 2o )
83 fco2 5448 . . . . . . . 8  |-  ( ( ( G  |`  2o ) : 2o --> { 0 ,  1 }  /\  g : A --> 2o )  ->  ( G  o.  g ) : A --> { 0 ,  1 } )
8480, 82, 83sylancr 414 . . . . . . 7  |-  ( ( ( A  e.  V  /\  A. f  e.  ( { 0 ,  1 }  ^m  A )DECID  A. x  e.  A  (
f `  x )  =  1 )  /\  g  e.  ( 2o  ^m  A ) )  -> 
( G  o.  g
) : A --> { 0 ,  1 } )
85 prexg 4259 . . . . . . . . . 10  |-  ( ( 0  e.  NN0  /\  1  e.  NN0 )  ->  { 0 ,  1 }  e.  _V )
8651, 52, 85mp2an 426 . . . . . . . . 9  |-  { 0 ,  1 }  e.  _V
8786a1i 9 . . . . . . . 8  |-  ( ( ( A  e.  V  /\  A. f  e.  ( { 0 ,  1 }  ^m  A )DECID  A. x  e.  A  (
f `  x )  =  1 )  /\  g  e.  ( 2o  ^m  A ) )  ->  { 0 ,  1 }  e.  _V )
88 simpll 527 . . . . . . . 8  |-  ( ( ( A  e.  V  /\  A. f  e.  ( { 0 ,  1 }  ^m  A )DECID  A. x  e.  A  (
f `  x )  =  1 )  /\  g  e.  ( 2o  ^m  A ) )  ->  A  e.  V )
8987, 88elmapd 6756 . . . . . . 7  |-  ( ( ( A  e.  V  /\  A. f  e.  ( { 0 ,  1 }  ^m  A )DECID  A. x  e.  A  (
f `  x )  =  1 )  /\  g  e.  ( 2o  ^m  A ) )  -> 
( ( G  o.  g )  e.  ( { 0 ,  1 }  ^m  A )  <-> 
( G  o.  g
) : A --> { 0 ,  1 } ) )
9084, 89mpbird 167 . . . . . 6  |-  ( ( ( A  e.  V  /\  A. f  e.  ( { 0 ,  1 }  ^m  A )DECID  A. x  e.  A  (
f `  x )  =  1 )  /\  g  e.  ( 2o  ^m  A ) )  -> 
( G  o.  g
)  e.  ( { 0 ,  1 }  ^m  A ) )
9178, 79, 90rspcdva 2883 . . . . 5  |-  ( ( ( A  e.  V  /\  A. f  e.  ( { 0 ,  1 }  ^m  A )DECID  A. x  e.  A  (
f `  x )  =  1 )  /\  g  e.  ( 2o  ^m  A ) )  -> DECID  A. x  e.  A  ( ( G  o.  g ) `  x )  =  1 )
92 nfcv 2349 . . . . . . . . . 10  |-  F/_ x
( { 0 ,  1 }  ^m  A
)
93 nfra1 2538 . . . . . . . . . . 11  |-  F/ x A. x  e.  A  ( f `  x
)  =  1
9493nfdc 1683 . . . . . . . . . 10  |-  F/ xDECID  A. x  e.  A  ( f `  x )  =  1
9592, 94nfralxy 2545 . . . . . . . . 9  |-  F/ x A. f  e.  ( { 0 ,  1 }  ^m  A )DECID  A. x  e.  A  (
f `  x )  =  1
9620, 95nfan 1589 . . . . . . . 8  |-  F/ x
( A  e.  V  /\  A. f  e.  ( { 0 ,  1 }  ^m  A )DECID  A. x  e.  A  (
f `  x )  =  1 )
97 nfv 1552 . . . . . . . 8  |-  F/ x  g  e.  ( 2o  ^m  A )
9896, 97nfan 1589 . . . . . . 7  |-  F/ x
( ( A  e.  V  /\  A. f  e.  ( { 0 ,  1 }  ^m  A
)DECID  A. x  e.  A  ( f `  x
)  =  1 )  /\  g  e.  ( 2o  ^m  A ) )
9981ad2antlr 489 . . . . . . . . . 10  |-  ( ( ( ( A  e.  V  /\  A. f  e.  ( { 0 ,  1 }  ^m  A
)DECID  A. x  e.  A  ( f `  x
)  =  1 )  /\  g  e.  ( 2o  ^m  A ) )  /\  x  e.  A )  ->  g : A --> 2o )
100 fvco3 5657 . . . . . . . . . 10  |-  ( ( g : A --> 2o  /\  x  e.  A )  ->  ( ( G  o.  g ) `  x
)  =  ( G `
 ( g `  x ) ) )
10199, 100sylancom 420 . . . . . . . . 9  |-  ( ( ( ( A  e.  V  /\  A. f  e.  ( { 0 ,  1 }  ^m  A
)DECID  A. x  e.  A  ( f `  x
)  =  1 )  /\  g  e.  ( 2o  ^m  A ) )  /\  x  e.  A )  ->  (
( G  o.  g
) `  x )  =  ( G `  ( g `  x
) ) )
102101eqeq1d 2215 . . . . . . . 8  |-  ( ( ( ( A  e.  V  /\  A. f  e.  ( { 0 ,  1 }  ^m  A
)DECID  A. x  e.  A  ( f `  x
)  =  1 )  /\  g  e.  ( 2o  ^m  A ) )  /\  x  e.  A )  ->  (
( ( G  o.  g ) `  x
)  =  1  <->  ( G `  ( g `  x ) )  =  1 ) )
103 f1of 5529 . . . . . . . . . . 11  |-  ( G : om -1-1-onto-> NN0  ->  G : om
--> NN0 )
10446, 103mp1i 10 . . . . . . . . . 10  |-  ( ( ( ( A  e.  V  /\  A. f  e.  ( { 0 ,  1 }  ^m  A
)DECID  A. x  e.  A  ( f `  x
)  =  1 )  /\  g  e.  ( 2o  ^m  A ) )  /\  x  e.  A )  ->  G : om --> NN0 )
105 omelon 4661 . . . . . . . . . . . . . 14  |-  om  e.  On
106105onelssi 4480 . . . . . . . . . . . . 13  |-  ( 2o  e.  om  ->  2o  C_ 
om )
10713, 106mp1i 10 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  V  /\  A. f  e.  ( { 0 ,  1 }  ^m  A
)DECID  A. x  e.  A  ( f `  x
)  =  1 )  /\  g  e.  ( 2o  ^m  A ) )  /\  x  e.  A )  ->  2o  C_ 
om )
10899, 107fssd 5444 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  V  /\  A. f  e.  ( { 0 ,  1 }  ^m  A
)DECID  A. x  e.  A  ( f `  x
)  =  1 )  /\  g  e.  ( 2o  ^m  A ) )  /\  x  e.  A )  ->  g : A --> om )
109 simpr 110 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  V  /\  A. f  e.  ( { 0 ,  1 }  ^m  A
)DECID  A. x  e.  A  ( f `  x
)  =  1 )  /\  g  e.  ( 2o  ^m  A ) )  /\  x  e.  A )  ->  x  e.  A )
110108, 109ffvelcdmd 5723 . . . . . . . . . 10  |-  ( ( ( ( A  e.  V  /\  A. f  e.  ( { 0 ,  1 }  ^m  A
)DECID  A. x  e.  A  ( f `  x
)  =  1 )  /\  g  e.  ( 2o  ^m  A ) )  /\  x  e.  A )  ->  (
g `  x )  e.  om )
111104, 110ffvelcdmd 5723 . . . . . . . . 9  |-  ( ( ( ( A  e.  V  /\  A. f  e.  ( { 0 ,  1 }  ^m  A
)DECID  A. x  e.  A  ( f `  x
)  =  1 )  /\  g  e.  ( 2o  ^m  A ) )  /\  x  e.  A )  ->  ( G `  ( g `  x ) )  e. 
NN0 )
112 f1ocnvfv 5855 . . . . . . . . . . . . 13  |-  ( ( G : om -1-1-onto-> NN0  /\  1o  e.  om )  ->  ( ( G `  1o )  =  1  ->  ( `' G `  1 )  =  1o ) )
11346, 59, 112mp2an 426 . . . . . . . . . . . 12  |-  ( ( G `  1o )  =  1  ->  ( `' G `  1 )  =  1o )
11444, 113ax-mp 5 . . . . . . . . . . 11  |-  ( `' G `  1 )  =  1o
115114eqeq2i 2217 . . . . . . . . . 10  |-  ( ( `' G `  ( G `
 ( g `  x ) ) )  =  ( `' G `  1 )  <->  ( `' G `  ( G `  ( g `  x
) ) )  =  1o )
116 f1of1 5528 . . . . . . . . . . . . 13  |-  ( `' G : NN0 -1-1-onto-> om  ->  `' G : NN0 -1-1-> om )
11746, 47, 116mp2b 8 . . . . . . . . . . . 12  |-  `' G : NN0 -1-1-> om
118 f1fveq 5848 . . . . . . . . . . . 12  |-  ( ( `' G : NN0 -1-1-> om  /\  ( ( G `  ( g `  x
) )  e.  NN0  /\  1  e.  NN0 )
)  ->  ( ( `' G `  ( G `
 ( g `  x ) ) )  =  ( `' G `  1 )  <->  ( G `  ( g `  x
) )  =  1 ) )
119117, 118mpan 424 . . . . . . . . . . 11  |-  ( ( ( G `  (
g `  x )
)  e.  NN0  /\  1  e.  NN0 )  -> 
( ( `' G `  ( G `  (
g `  x )
) )  =  ( `' G `  1 )  <-> 
( G `  (
g `  x )
)  =  1 ) )
12052, 119mpan2 425 . . . . . . . . . 10  |-  ( ( G `  ( g `
 x ) )  e.  NN0  ->  ( ( `' G `  ( G `
 ( g `  x ) ) )  =  ( `' G `  1 )  <->  ( G `  ( g `  x
) )  =  1 ) )
121115, 120bitr3id 194 . . . . . . . . 9  |-  ( ( G `  ( g `
 x ) )  e.  NN0  ->  ( ( `' G `  ( G `
 ( g `  x ) ) )  =  1o  <->  ( G `  ( g `  x
) )  =  1 ) )
122111, 121syl 14 . . . . . . . 8  |-  ( ( ( ( A  e.  V  /\  A. f  e.  ( { 0 ,  1 }  ^m  A
)DECID  A. x  e.  A  ( f `  x
)  =  1 )  /\  g  e.  ( 2o  ^m  A ) )  /\  x  e.  A )  ->  (
( `' G `  ( G `  ( g `
 x ) ) )  =  1o  <->  ( G `  ( g `  x
) )  =  1 ) )
123 f1ocnvfv1 5853 . . . . . . . . . 10  |-  ( ( G : om -1-1-onto-> NN0  /\  ( g `
 x )  e. 
om )  ->  ( `' G `  ( G `
 ( g `  x ) ) )  =  ( g `  x ) )
12446, 110, 123sylancr 414 . . . . . . . . 9  |-  ( ( ( ( A  e.  V  /\  A. f  e.  ( { 0 ,  1 }  ^m  A
)DECID  A. x  e.  A  ( f `  x
)  =  1 )  /\  g  e.  ( 2o  ^m  A ) )  /\  x  e.  A )  ->  ( `' G `  ( G `
 ( g `  x ) ) )  =  ( g `  x ) )
125124eqeq1d 2215 . . . . . . . 8  |-  ( ( ( ( A  e.  V  /\  A. f  e.  ( { 0 ,  1 }  ^m  A
)DECID  A. x  e.  A  ( f `  x
)  =  1 )  /\  g  e.  ( 2o  ^m  A ) )  /\  x  e.  A )  ->  (
( `' G `  ( G `  ( g `
 x ) ) )  =  1o  <->  ( g `  x )  =  1o ) )
126102, 122, 1253bitr2d 216 . . . . . . 7  |-  ( ( ( ( A  e.  V  /\  A. f  e.  ( { 0 ,  1 }  ^m  A
)DECID  A. x  e.  A  ( f `  x
)  =  1 )  /\  g  e.  ( 2o  ^m  A ) )  /\  x  e.  A )  ->  (
( ( G  o.  g ) `  x
)  =  1  <->  (
g `  x )  =  1o ) )
12798, 126ralbida 2501 . . . . . 6  |-  ( ( ( A  e.  V  /\  A. f  e.  ( { 0 ,  1 }  ^m  A )DECID  A. x  e.  A  (
f `  x )  =  1 )  /\  g  e.  ( 2o  ^m  A ) )  -> 
( A. x  e.  A  ( ( G  o.  g ) `  x )  =  1  <->  A. x  e.  A  ( g `  x
)  =  1o ) )
128127dcbid 840 . . . . 5  |-  ( ( ( A  e.  V  /\  A. f  e.  ( { 0 ,  1 }  ^m  A )DECID  A. x  e.  A  (
f `  x )  =  1 )  /\  g  e.  ( 2o  ^m  A ) )  -> 
(DECID  A. x  e.  A  ( ( G  o.  g ) `  x
)  =  1  <-> DECID  A. x  e.  A  ( g `  x )  =  1o ) )
12991, 128mpbid 147 . . . 4  |-  ( ( ( A  e.  V  /\  A. f  e.  ( { 0 ,  1 }  ^m  A )DECID  A. x  e.  A  (
f `  x )  =  1 )  /\  g  e.  ( 2o  ^m  A ) )  -> DECID  A. x  e.  A  ( g `  x )  =  1o )
130129ralrimiva 2580 . . 3  |-  ( ( A  e.  V  /\  A. f  e.  ( { 0 ,  1 }  ^m  A )DECID  A. x  e.  A  ( f `  x )  =  1 )  ->  A. g  e.  ( 2o  ^m  A
)DECID  A. x  e.  A  ( g `  x
)  =  1o )
13174, 130impbida 596 . 2  |-  ( A  e.  V  ->  ( A. g  e.  ( 2o  ^m  A )DECID  A. x  e.  A  ( g `  x )  =  1o  <->  A. f  e.  ( { 0 ,  1 }  ^m  A )DECID  A. x  e.  A  ( f `  x )  =  1 ) )
1321, 131bitrd 188 1  |-  ( A  e.  V  ->  ( A  e. WOmni  <->  A. f  e.  ( { 0 ,  1 }  ^m  A )DECID  A. x  e.  A  (
f `  x )  =  1 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105  DECID wdc 836    = wceq 1373   T. wtru 1374    e. wcel 2177   A.wral 2485   _Vcvv 2773    C_ wss 3167   (/)c0 3461   {cpr 3635    |-> cmpt 4109   suc csuc 4416   omcom 4642   `'ccnv 4678    |` cres 4681    o. ccom 4683   -->wf 5272   -1-1->wf1 5273   -1-1-onto->wf1o 5275   ` cfv 5276  (class class class)co 5951  freccfrec 6483   1oc1o 6502   2oc2o 6503    ^m cmap 6742  WOmnicwomni 7272   0cc0 7932   1c1 7933    + caddc 7935   NN0cn0 9302   ZZcz 9379
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4163  ax-sep 4166  ax-nul 4174  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-setind 4589  ax-iinf 4640  ax-cnex 8023  ax-resscn 8024  ax-1cn 8025  ax-1re 8026  ax-icn 8027  ax-addcl 8028  ax-addrcl 8029  ax-mulcl 8030  ax-addcom 8032  ax-addass 8034  ax-distr 8036  ax-i2m1 8037  ax-0lt1 8038  ax-0id 8040  ax-rnegex 8041  ax-cnre 8043  ax-pre-ltirr 8044  ax-pre-ltwlin 8045  ax-pre-lttrn 8046  ax-pre-ltadd 8048
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3000  df-csb 3095  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-nul 3462  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-int 3888  df-iun 3931  df-br 4048  df-opab 4110  df-mpt 4111  df-tr 4147  df-id 4344  df-iord 4417  df-on 4419  df-ilim 4420  df-suc 4422  df-iom 4643  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-f 5280  df-f1 5281  df-fo 5282  df-f1o 5283  df-fv 5284  df-riota 5906  df-ov 5954  df-oprab 5955  df-mpo 5956  df-recs 6398  df-frec 6484  df-1o 6509  df-2o 6510  df-map 6744  df-womni 7273  df-pnf 8116  df-mnf 8117  df-xr 8118  df-ltxr 8119  df-le 8120  df-sub 8252  df-neg 8253  df-inn 9044  df-n0 9303  df-z 9380  df-uz 9656
This theorem is referenced by:  iswomninn  16063
  Copyright terms: Public domain W3C validator