ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  relin2 Unicode version

Theorem relin2 4778
Description: The intersection with a relation is a relation. (Contributed by NM, 17-Jan-2006.)
Assertion
Ref Expression
relin2  |-  ( Rel 
B  ->  Rel  ( A  i^i  B ) )

Proof of Theorem relin2
StepHypRef Expression
1 inss2 3380 . 2  |-  ( A  i^i  B )  C_  B
2 relss 4746 . 2  |-  ( ( A  i^i  B ) 
C_  B  ->  ( Rel  B  ->  Rel  ( A  i^i  B ) ) )
31, 2ax-mp 5 1  |-  ( Rel 
B  ->  Rel  ( A  i^i  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    i^i cin 3152    C_ wss 3153   Rel wrel 4664
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-in 3159  df-ss 3166  df-rel 4666
This theorem is referenced by:  intasym  5050  asymref  5051  poirr2  5058
  Copyright terms: Public domain W3C validator