Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > intasym | Unicode version |
Description: Two ways of saying a relation is antisymmetric. Definition of antisymmetry in [Schechter] p. 51. (Contributed by NM, 9-Sep-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
Ref | Expression |
---|---|
intasym |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relcnv 4989 | . . 3 | |
2 | relin2 4730 | . . 3 | |
3 | ssrel 4699 | . . 3 | |
4 | 1, 2, 3 | mp2b 8 | . 2 |
5 | elin 3310 | . . . . 5 | |
6 | df-br 3990 | . . . . . 6 | |
7 | vex 2733 | . . . . . . . 8 | |
8 | vex 2733 | . . . . . . . 8 | |
9 | 7, 8 | brcnv 4794 | . . . . . . 7 |
10 | df-br 3990 | . . . . . . 7 | |
11 | 9, 10 | bitr3i 185 | . . . . . 6 |
12 | 6, 11 | anbi12i 457 | . . . . 5 |
13 | 5, 12 | bitr4i 186 | . . . 4 |
14 | df-br 3990 | . . . . 5 | |
15 | 8 | ideq 4763 | . . . . 5 |
16 | 14, 15 | bitr3i 185 | . . . 4 |
17 | 13, 16 | imbi12i 238 | . . 3 |
18 | 17 | 2albii 1464 | . 2 |
19 | 4, 18 | bitri 183 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wal 1346 wcel 2141 cin 3120 wss 3121 cop 3586 class class class wbr 3989 cid 4273 ccnv 4610 wrel 4616 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-br 3990 df-opab 4051 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |