Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > intasym | Unicode version |
Description: Two ways of saying a relation is antisymmetric. Definition of antisymmetry in [Schechter] p. 51. (Contributed by NM, 9-Sep-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
Ref | Expression |
---|---|
intasym |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relcnv 4982 | . . 3 | |
2 | relin2 4723 | . . 3 | |
3 | ssrel 4692 | . . 3 | |
4 | 1, 2, 3 | mp2b 8 | . 2 |
5 | elin 3305 | . . . . 5 | |
6 | df-br 3983 | . . . . . 6 | |
7 | vex 2729 | . . . . . . . 8 | |
8 | vex 2729 | . . . . . . . 8 | |
9 | 7, 8 | brcnv 4787 | . . . . . . 7 |
10 | df-br 3983 | . . . . . . 7 | |
11 | 9, 10 | bitr3i 185 | . . . . . 6 |
12 | 6, 11 | anbi12i 456 | . . . . 5 |
13 | 5, 12 | bitr4i 186 | . . . 4 |
14 | df-br 3983 | . . . . 5 | |
15 | 8 | ideq 4756 | . . . . 5 |
16 | 14, 15 | bitr3i 185 | . . . 4 |
17 | 13, 16 | imbi12i 238 | . . 3 |
18 | 17 | 2albii 1459 | . 2 |
19 | 4, 18 | bitri 183 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wal 1341 wcel 2136 cin 3115 wss 3116 cop 3579 class class class wbr 3982 cid 4266 ccnv 4603 wrel 4609 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-br 3983 df-opab 4044 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |