ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  intasym Unicode version

Theorem intasym 5054
Description: Two ways of saying a relation is antisymmetric. Definition of antisymmetry in [Schechter] p. 51. (Contributed by NM, 9-Sep-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
intasym  |-  ( ( R  i^i  `' R
)  C_  _I  <->  A. x A. y ( ( x R y  /\  y R x )  ->  x  =  y )
)
Distinct variable group:    x, y, R

Proof of Theorem intasym
StepHypRef Expression
1 relcnv 5047 . . 3  |-  Rel  `' R
2 relin2 4782 . . 3  |-  ( Rel  `' R  ->  Rel  ( R  i^i  `' R ) )
3 ssrel 4751 . . 3  |-  ( Rel  ( R  i^i  `' R )  ->  (
( R  i^i  `' R )  C_  _I  <->  A. x A. y (
<. x ,  y >.  e.  ( R  i^i  `' R )  ->  <. x ,  y >.  e.  _I  ) ) )
41, 2, 3mp2b 8 . 2  |-  ( ( R  i^i  `' R
)  C_  _I  <->  A. x A. y ( <. x ,  y >.  e.  ( R  i^i  `' R
)  ->  <. x ,  y >.  e.  _I  ) )
5 elin 3346 . . . . 5  |-  ( <.
x ,  y >.  e.  ( R  i^i  `' R )  <->  ( <. x ,  y >.  e.  R  /\  <. x ,  y
>.  e.  `' R ) )
6 df-br 4034 . . . . . 6  |-  ( x R y  <->  <. x ,  y >.  e.  R
)
7 vex 2766 . . . . . . . 8  |-  x  e. 
_V
8 vex 2766 . . . . . . . 8  |-  y  e. 
_V
97, 8brcnv 4849 . . . . . . 7  |-  ( x `' R y  <->  y R x )
10 df-br 4034 . . . . . . 7  |-  ( x `' R y  <->  <. x ,  y >.  e.  `' R )
119, 10bitr3i 186 . . . . . 6  |-  ( y R x  <->  <. x ,  y >.  e.  `' R )
126, 11anbi12i 460 . . . . 5  |-  ( ( x R y  /\  y R x )  <->  ( <. x ,  y >.  e.  R  /\  <. x ,  y
>.  e.  `' R ) )
135, 12bitr4i 187 . . . 4  |-  ( <.
x ,  y >.  e.  ( R  i^i  `' R )  <->  ( x R y  /\  y R x ) )
14 df-br 4034 . . . . 5  |-  ( x  _I  y  <->  <. x ,  y >.  e.  _I  )
158ideq 4818 . . . . 5  |-  ( x  _I  y  <->  x  =  y )
1614, 15bitr3i 186 . . . 4  |-  ( <.
x ,  y >.  e.  _I  <->  x  =  y
)
1713, 16imbi12i 239 . . 3  |-  ( (
<. x ,  y >.  e.  ( R  i^i  `' R )  ->  <. x ,  y >.  e.  _I  ) 
<->  ( ( x R y  /\  y R x )  ->  x  =  y ) )
18172albii 1485 . 2  |-  ( A. x A. y ( <.
x ,  y >.  e.  ( R  i^i  `' R )  ->  <. x ,  y >.  e.  _I  ) 
<-> 
A. x A. y
( ( x R y  /\  y R x )  ->  x  =  y ) )
194, 18bitri 184 1  |-  ( ( R  i^i  `' R
)  C_  _I  <->  A. x A. y ( ( x R y  /\  y R x )  ->  x  =  y )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105   A.wal 1362    e. wcel 2167    i^i cin 3156    C_ wss 3157   <.cop 3625   class class class wbr 4033    _I cid 4323   `'ccnv 4662   Rel wrel 4668
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-br 4034  df-opab 4095  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator