| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > relss | Unicode version | ||
| Description: Subclass theorem for relation predicate. Theorem 2 of [Suppes] p. 58. (Contributed by NM, 15-Aug-1994.) |
| Ref | Expression |
|---|---|
| relss |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sstr2 3191 |
. 2
| |
| 2 | df-rel 4671 |
. 2
| |
| 3 | df-rel 4671 |
. 2
| |
| 4 | 1, 2, 3 | 3imtr4g 205 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-in 3163 df-ss 3170 df-rel 4671 |
| This theorem is referenced by: relin1 4782 relin2 4783 reldif 4784 relres 4975 iss 4993 cnvdif 5077 funss 5278 funssres 5301 fliftcnv 5845 fliftfun 5846 reltpos 6317 tpostpos 6331 swoer 6629 erinxp 6677 ltrel 8105 lerel 8107 txdis1cn 14598 xmeter 14756 lgsquadlem1 15402 lgsquadlem2 15403 |
| Copyright terms: Public domain | W3C validator |