| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > relss | Unicode version | ||
| Description: Subclass theorem for relation predicate. Theorem 2 of [Suppes] p. 58. (Contributed by NM, 15-Aug-1994.) |
| Ref | Expression |
|---|---|
| relss |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sstr2 3200 |
. 2
| |
| 2 | df-rel 4683 |
. 2
| |
| 3 | df-rel 4683 |
. 2
| |
| 4 | 1, 2, 3 | 3imtr4g 205 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-11 1529 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-in 3172 df-ss 3179 df-rel 4683 |
| This theorem is referenced by: relin1 4794 relin2 4795 reldif 4796 relres 4988 iss 5006 cnvdif 5090 funss 5291 funssres 5314 fliftcnv 5866 fliftfun 5867 reltpos 6338 tpostpos 6352 swoer 6650 erinxp 6698 ltrel 8136 lerel 8138 txdis1cn 14783 xmeter 14941 lgsquadlem1 15587 lgsquadlem2 15588 |
| Copyright terms: Public domain | W3C validator |