| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > relss | Unicode version | ||
| Description: Subclass theorem for relation predicate. Theorem 2 of [Suppes] p. 58. (Contributed by NM, 15-Aug-1994.) |
| Ref | Expression |
|---|---|
| relss |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sstr2 3200 |
. 2
| |
| 2 | df-rel 4682 |
. 2
| |
| 3 | df-rel 4682 |
. 2
| |
| 4 | 1, 2, 3 | 3imtr4g 205 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-11 1529 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-in 3172 df-ss 3179 df-rel 4682 |
| This theorem is referenced by: relin1 4793 relin2 4794 reldif 4795 relres 4987 iss 5005 cnvdif 5089 funss 5290 funssres 5313 fliftcnv 5864 fliftfun 5865 reltpos 6336 tpostpos 6350 swoer 6648 erinxp 6696 ltrel 8134 lerel 8136 txdis1cn 14750 xmeter 14908 lgsquadlem1 15554 lgsquadlem2 15555 |
| Copyright terms: Public domain | W3C validator |