Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > relss | Unicode version |
Description: Subclass theorem for relation predicate. Theorem 2 of [Suppes] p. 58. (Contributed by NM, 15-Aug-1994.) |
Ref | Expression |
---|---|
relss |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sstr2 3149 | . 2 | |
2 | df-rel 4611 | . 2 | |
3 | df-rel 4611 | . 2 | |
4 | 1, 2, 3 | 3imtr4g 204 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 cvv 2726 wss 3116 cxp 4602 wrel 4609 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-11 1494 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-in 3122 df-ss 3129 df-rel 4611 |
This theorem is referenced by: relin1 4722 relin2 4723 reldif 4724 relres 4912 iss 4930 cnvdif 5010 funss 5207 funssres 5230 fliftcnv 5763 fliftfun 5764 reltpos 6218 tpostpos 6232 swoer 6529 erinxp 6575 ltrel 7960 lerel 7962 txdis1cn 12918 xmeter 13076 |
Copyright terms: Public domain | W3C validator |