ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  poirr2 Unicode version

Theorem poirr2 4867
Description: A partial order relation is irreflexive. (Contributed by Mario Carneiro, 2-Nov-2015.)
Assertion
Ref Expression
poirr2  |-  ( R  Po  A  ->  ( R  i^i  (  _I  |`  A ) )  =  (/) )

Proof of Theorem poirr2
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relres 4783 . . . 4  |-  Rel  (  _I  |`  A )
2 relin2 4596 . . . 4  |-  ( Rel  (  _I  |`  A )  ->  Rel  ( R  i^i  (  _I  |`  A ) ) )
31, 2mp1i 10 . . 3  |-  ( R  Po  A  ->  Rel  ( R  i^i  (  _I  |`  A ) ) )
4 df-br 3876 . . . . 5  |-  ( x ( R  i^i  (  _I  |`  A ) ) y  <->  <. x ,  y
>.  e.  ( R  i^i  (  _I  |`  A ) ) )
5 brin 3922 . . . . 5  |-  ( x ( R  i^i  (  _I  |`  A ) ) y  <->  ( x R y  /\  x (  _I  |`  A )
y ) )
64, 5bitr3i 185 . . . 4  |-  ( <.
x ,  y >.  e.  ( R  i^i  (  _I  |`  A ) )  <-> 
( x R y  /\  x (  _I  |`  A ) y ) )
7 vex 2644 . . . . . . . . 9  |-  y  e. 
_V
87brres 4761 . . . . . . . 8  |-  ( x (  _I  |`  A ) y  <->  ( x  _I  y  /\  x  e.  A ) )
9 poirr 4167 . . . . . . . . . . 11  |-  ( ( R  Po  A  /\  x  e.  A )  ->  -.  x R x )
107ideq 4629 . . . . . . . . . . . . 13  |-  ( x  _I  y  <->  x  =  y )
11 breq2 3879 . . . . . . . . . . . . 13  |-  ( x  =  y  ->  (
x R x  <->  x R
y ) )
1210, 11sylbi 120 . . . . . . . . . . . 12  |-  ( x  _I  y  ->  (
x R x  <->  x R
y ) )
1312notbid 633 . . . . . . . . . . 11  |-  ( x  _I  y  ->  ( -.  x R x  <->  -.  x R y ) )
149, 13syl5ibcom 154 . . . . . . . . . 10  |-  ( ( R  Po  A  /\  x  e.  A )  ->  ( x  _I  y  ->  -.  x R y ) )
1514expimpd 358 . . . . . . . . 9  |-  ( R  Po  A  ->  (
( x  e.  A  /\  x  _I  y
)  ->  -.  x R y ) )
1615ancomsd 267 . . . . . . . 8  |-  ( R  Po  A  ->  (
( x  _I  y  /\  x  e.  A
)  ->  -.  x R y ) )
178, 16syl5bi 151 . . . . . . 7  |-  ( R  Po  A  ->  (
x (  _I  |`  A ) y  ->  -.  x R y ) )
1817con2d 594 . . . . . 6  |-  ( R  Po  A  ->  (
x R y  ->  -.  x (  _I  |`  A ) y ) )
19 imnan 665 . . . . . 6  |-  ( ( x R y  ->  -.  x (  _I  |`  A ) y )  <->  -.  (
x R y  /\  x (  _I  |`  A ) y ) )
2018, 19sylib 121 . . . . 5  |-  ( R  Po  A  ->  -.  ( x R y  /\  x (  _I  |`  A ) y ) )
2120pm2.21d 589 . . . 4  |-  ( R  Po  A  ->  (
( x R y  /\  x (  _I  |`  A ) y )  ->  <. x ,  y
>.  e.  (/) ) )
226, 21syl5bi 151 . . 3  |-  ( R  Po  A  ->  ( <. x ,  y >.  e.  ( R  i^i  (  _I  |`  A ) )  ->  <. x ,  y
>.  e.  (/) ) )
233, 22relssdv 4569 . 2  |-  ( R  Po  A  ->  ( R  i^i  (  _I  |`  A ) )  C_  (/) )
24 ss0 3350 . 2  |-  ( ( R  i^i  (  _I  |`  A ) )  C_  (/) 
->  ( R  i^i  (  _I  |`  A ) )  =  (/) )
2523, 24syl 14 1  |-  ( R  Po  A  ->  ( R  i^i  (  _I  |`  A ) )  =  (/) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1299    e. wcel 1448    i^i cin 3020    C_ wss 3021   (/)c0 3310   <.cop 3477   class class class wbr 3875    _I cid 4148    Po wpo 4154    |` cres 4479   Rel wrel 4482
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 584  ax-in2 585  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-14 1460  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082  ax-sep 3986  ax-pow 4038  ax-pr 4069
This theorem depends on definitions:  df-bi 116  df-3an 932  df-tru 1302  df-nf 1405  df-sb 1704  df-eu 1963  df-mo 1964  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-ral 2380  df-rex 2381  df-v 2643  df-dif 3023  df-un 3025  df-in 3027  df-ss 3034  df-nul 3311  df-pw 3459  df-sn 3480  df-pr 3481  df-op 3483  df-br 3876  df-opab 3930  df-id 4153  df-po 4156  df-xp 4483  df-rel 4484  df-res 4489
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator