Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > poirr2 | Unicode version |
Description: A partial order relation is irreflexive. (Contributed by Mario Carneiro, 2-Nov-2015.) |
Ref | Expression |
---|---|
poirr2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relres 4919 | . . . 4 | |
2 | relin2 4730 | . . . 4 | |
3 | 1, 2 | mp1i 10 | . . 3 |
4 | df-br 3990 | . . . . 5 | |
5 | brin 4041 | . . . . 5 | |
6 | 4, 5 | bitr3i 185 | . . . 4 |
7 | vex 2733 | . . . . . . . . 9 | |
8 | 7 | brres 4897 | . . . . . . . 8 |
9 | poirr 4292 | . . . . . . . . . . 11 | |
10 | 7 | ideq 4763 | . . . . . . . . . . . . 13 |
11 | breq2 3993 | . . . . . . . . . . . . 13 | |
12 | 10, 11 | sylbi 120 | . . . . . . . . . . . 12 |
13 | 12 | notbid 662 | . . . . . . . . . . 11 |
14 | 9, 13 | syl5ibcom 154 | . . . . . . . . . 10 |
15 | 14 | expimpd 361 | . . . . . . . . 9 |
16 | 15 | ancomsd 267 | . . . . . . . 8 |
17 | 8, 16 | syl5bi 151 | . . . . . . 7 |
18 | 17 | con2d 619 | . . . . . 6 |
19 | imnan 685 | . . . . . 6 | |
20 | 18, 19 | sylib 121 | . . . . 5 |
21 | 20 | pm2.21d 614 | . . . 4 |
22 | 6, 21 | syl5bi 151 | . . 3 |
23 | 3, 22 | relssdv 4703 | . 2 |
24 | ss0 3455 | . 2 | |
25 | 23, 24 | syl 14 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 wceq 1348 wcel 2141 cin 3120 wss 3121 c0 3414 cop 3586 class class class wbr 3989 cid 4273 wpo 4279 cres 4613 wrel 4616 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-br 3990 df-opab 4051 df-id 4278 df-po 4281 df-xp 4617 df-rel 4618 df-res 4623 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |