ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  poirr2 Unicode version

Theorem poirr2 4939
Description: A partial order relation is irreflexive. (Contributed by Mario Carneiro, 2-Nov-2015.)
Assertion
Ref Expression
poirr2  |-  ( R  Po  A  ->  ( R  i^i  (  _I  |`  A ) )  =  (/) )

Proof of Theorem poirr2
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relres 4855 . . . 4  |-  Rel  (  _I  |`  A )
2 relin2 4666 . . . 4  |-  ( Rel  (  _I  |`  A )  ->  Rel  ( R  i^i  (  _I  |`  A ) ) )
31, 2mp1i 10 . . 3  |-  ( R  Po  A  ->  Rel  ( R  i^i  (  _I  |`  A ) ) )
4 df-br 3938 . . . . 5  |-  ( x ( R  i^i  (  _I  |`  A ) ) y  <->  <. x ,  y
>.  e.  ( R  i^i  (  _I  |`  A ) ) )
5 brin 3988 . . . . 5  |-  ( x ( R  i^i  (  _I  |`  A ) ) y  <->  ( x R y  /\  x (  _I  |`  A )
y ) )
64, 5bitr3i 185 . . . 4  |-  ( <.
x ,  y >.  e.  ( R  i^i  (  _I  |`  A ) )  <-> 
( x R y  /\  x (  _I  |`  A ) y ) )
7 vex 2692 . . . . . . . . 9  |-  y  e. 
_V
87brres 4833 . . . . . . . 8  |-  ( x (  _I  |`  A ) y  <->  ( x  _I  y  /\  x  e.  A ) )
9 poirr 4237 . . . . . . . . . . 11  |-  ( ( R  Po  A  /\  x  e.  A )  ->  -.  x R x )
107ideq 4699 . . . . . . . . . . . . 13  |-  ( x  _I  y  <->  x  =  y )
11 breq2 3941 . . . . . . . . . . . . 13  |-  ( x  =  y  ->  (
x R x  <->  x R
y ) )
1210, 11sylbi 120 . . . . . . . . . . . 12  |-  ( x  _I  y  ->  (
x R x  <->  x R
y ) )
1312notbid 657 . . . . . . . . . . 11  |-  ( x  _I  y  ->  ( -.  x R x  <->  -.  x R y ) )
149, 13syl5ibcom 154 . . . . . . . . . 10  |-  ( ( R  Po  A  /\  x  e.  A )  ->  ( x  _I  y  ->  -.  x R y ) )
1514expimpd 361 . . . . . . . . 9  |-  ( R  Po  A  ->  (
( x  e.  A  /\  x  _I  y
)  ->  -.  x R y ) )
1615ancomsd 267 . . . . . . . 8  |-  ( R  Po  A  ->  (
( x  _I  y  /\  x  e.  A
)  ->  -.  x R y ) )
178, 16syl5bi 151 . . . . . . 7  |-  ( R  Po  A  ->  (
x (  _I  |`  A ) y  ->  -.  x R y ) )
1817con2d 614 . . . . . 6  |-  ( R  Po  A  ->  (
x R y  ->  -.  x (  _I  |`  A ) y ) )
19 imnan 680 . . . . . 6  |-  ( ( x R y  ->  -.  x (  _I  |`  A ) y )  <->  -.  (
x R y  /\  x (  _I  |`  A ) y ) )
2018, 19sylib 121 . . . . 5  |-  ( R  Po  A  ->  -.  ( x R y  /\  x (  _I  |`  A ) y ) )
2120pm2.21d 609 . . . 4  |-  ( R  Po  A  ->  (
( x R y  /\  x (  _I  |`  A ) y )  ->  <. x ,  y
>.  e.  (/) ) )
226, 21syl5bi 151 . . 3  |-  ( R  Po  A  ->  ( <. x ,  y >.  e.  ( R  i^i  (  _I  |`  A ) )  ->  <. x ,  y
>.  e.  (/) ) )
233, 22relssdv 4639 . 2  |-  ( R  Po  A  ->  ( R  i^i  (  _I  |`  A ) )  C_  (/) )
24 ss0 3408 . 2  |-  ( ( R  i^i  (  _I  |`  A ) )  C_  (/) 
->  ( R  i^i  (  _I  |`  A ) )  =  (/) )
2523, 24syl 14 1  |-  ( R  Po  A  ->  ( R  i^i  (  _I  |`  A ) )  =  (/) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1332    e. wcel 1481    i^i cin 3075    C_ wss 3076   (/)c0 3368   <.cop 3535   class class class wbr 3937    _I cid 4218    Po wpo 4224    |` cres 4549   Rel wrel 4552
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ral 2422  df-rex 2423  df-v 2691  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-br 3938  df-opab 3998  df-id 4223  df-po 4226  df-xp 4553  df-rel 4554  df-res 4559
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator