ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  poirr2 Unicode version

Theorem poirr2 5062
Description: A partial order relation is irreflexive. (Contributed by Mario Carneiro, 2-Nov-2015.)
Assertion
Ref Expression
poirr2  |-  ( R  Po  A  ->  ( R  i^i  (  _I  |`  A ) )  =  (/) )

Proof of Theorem poirr2
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relres 4974 . . . 4  |-  Rel  (  _I  |`  A )
2 relin2 4782 . . . 4  |-  ( Rel  (  _I  |`  A )  ->  Rel  ( R  i^i  (  _I  |`  A ) ) )
31, 2mp1i 10 . . 3  |-  ( R  Po  A  ->  Rel  ( R  i^i  (  _I  |`  A ) ) )
4 df-br 4034 . . . . 5  |-  ( x ( R  i^i  (  _I  |`  A ) ) y  <->  <. x ,  y
>.  e.  ( R  i^i  (  _I  |`  A ) ) )
5 brin 4085 . . . . 5  |-  ( x ( R  i^i  (  _I  |`  A ) ) y  <->  ( x R y  /\  x (  _I  |`  A )
y ) )
64, 5bitr3i 186 . . . 4  |-  ( <.
x ,  y >.  e.  ( R  i^i  (  _I  |`  A ) )  <-> 
( x R y  /\  x (  _I  |`  A ) y ) )
7 vex 2766 . . . . . . . . 9  |-  y  e. 
_V
87brres 4952 . . . . . . . 8  |-  ( x (  _I  |`  A ) y  <->  ( x  _I  y  /\  x  e.  A ) )
9 poirr 4342 . . . . . . . . . . 11  |-  ( ( R  Po  A  /\  x  e.  A )  ->  -.  x R x )
107ideq 4818 . . . . . . . . . . . . 13  |-  ( x  _I  y  <->  x  =  y )
11 breq2 4037 . . . . . . . . . . . . 13  |-  ( x  =  y  ->  (
x R x  <->  x R
y ) )
1210, 11sylbi 121 . . . . . . . . . . . 12  |-  ( x  _I  y  ->  (
x R x  <->  x R
y ) )
1312notbid 668 . . . . . . . . . . 11  |-  ( x  _I  y  ->  ( -.  x R x  <->  -.  x R y ) )
149, 13syl5ibcom 155 . . . . . . . . . 10  |-  ( ( R  Po  A  /\  x  e.  A )  ->  ( x  _I  y  ->  -.  x R y ) )
1514expimpd 363 . . . . . . . . 9  |-  ( R  Po  A  ->  (
( x  e.  A  /\  x  _I  y
)  ->  -.  x R y ) )
1615ancomsd 269 . . . . . . . 8  |-  ( R  Po  A  ->  (
( x  _I  y  /\  x  e.  A
)  ->  -.  x R y ) )
178, 16biimtrid 152 . . . . . . 7  |-  ( R  Po  A  ->  (
x (  _I  |`  A ) y  ->  -.  x R y ) )
1817con2d 625 . . . . . 6  |-  ( R  Po  A  ->  (
x R y  ->  -.  x (  _I  |`  A ) y ) )
19 imnan 691 . . . . . 6  |-  ( ( x R y  ->  -.  x (  _I  |`  A ) y )  <->  -.  (
x R y  /\  x (  _I  |`  A ) y ) )
2018, 19sylib 122 . . . . 5  |-  ( R  Po  A  ->  -.  ( x R y  /\  x (  _I  |`  A ) y ) )
2120pm2.21d 620 . . . 4  |-  ( R  Po  A  ->  (
( x R y  /\  x (  _I  |`  A ) y )  ->  <. x ,  y
>.  e.  (/) ) )
226, 21biimtrid 152 . . 3  |-  ( R  Po  A  ->  ( <. x ,  y >.  e.  ( R  i^i  (  _I  |`  A ) )  ->  <. x ,  y
>.  e.  (/) ) )
233, 22relssdv 4755 . 2  |-  ( R  Po  A  ->  ( R  i^i  (  _I  |`  A ) )  C_  (/) )
24 ss0 3491 . 2  |-  ( ( R  i^i  (  _I  |`  A ) )  C_  (/) 
->  ( R  i^i  (  _I  |`  A ) )  =  (/) )
2523, 24syl 14 1  |-  ( R  Po  A  ->  ( R  i^i  (  _I  |`  A ) )  =  (/) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2167    i^i cin 3156    C_ wss 3157   (/)c0 3450   <.cop 3625   class class class wbr 4033    _I cid 4323    Po wpo 4329    |` cres 4665   Rel wrel 4668
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-br 4034  df-opab 4095  df-id 4328  df-po 4331  df-xp 4669  df-rel 4670  df-res 4675
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator