| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > poirr2 | Unicode version | ||
| Description: A partial order relation is irreflexive. (Contributed by Mario Carneiro, 2-Nov-2015.) |
| Ref | Expression |
|---|---|
| poirr2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relres 5033 |
. . . 4
| |
| 2 | relin2 4838 |
. . . 4
| |
| 3 | 1, 2 | mp1i 10 |
. . 3
|
| 4 | df-br 4084 |
. . . . 5
| |
| 5 | brin 4136 |
. . . . 5
| |
| 6 | 4, 5 | bitr3i 186 |
. . . 4
|
| 7 | vex 2802 |
. . . . . . . . 9
| |
| 8 | 7 | brres 5011 |
. . . . . . . 8
|
| 9 | poirr 4398 |
. . . . . . . . . . 11
| |
| 10 | 7 | ideq 4874 |
. . . . . . . . . . . . 13
|
| 11 | breq2 4087 |
. . . . . . . . . . . . 13
| |
| 12 | 10, 11 | sylbi 121 |
. . . . . . . . . . . 12
|
| 13 | 12 | notbid 671 |
. . . . . . . . . . 11
|
| 14 | 9, 13 | syl5ibcom 155 |
. . . . . . . . . 10
|
| 15 | 14 | expimpd 363 |
. . . . . . . . 9
|
| 16 | 15 | ancomsd 269 |
. . . . . . . 8
|
| 17 | 8, 16 | biimtrid 152 |
. . . . . . 7
|
| 18 | 17 | con2d 627 |
. . . . . 6
|
| 19 | imnan 694 |
. . . . . 6
| |
| 20 | 18, 19 | sylib 122 |
. . . . 5
|
| 21 | 20 | pm2.21d 622 |
. . . 4
|
| 22 | 6, 21 | biimtrid 152 |
. . 3
|
| 23 | 3, 22 | relssdv 4811 |
. 2
|
| 24 | ss0 3532 |
. 2
| |
| 25 | 23, 24 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-br 4084 df-opab 4146 df-id 4384 df-po 4387 df-xp 4725 df-rel 4726 df-res 4731 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |