| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > poirr2 | Unicode version | ||
| Description: A partial order relation is irreflexive. (Contributed by Mario Carneiro, 2-Nov-2015.) |
| Ref | Expression |
|---|---|
| poirr2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relres 4987 |
. . . 4
| |
| 2 | relin2 4794 |
. . . 4
| |
| 3 | 1, 2 | mp1i 10 |
. . 3
|
| 4 | df-br 4045 |
. . . . 5
| |
| 5 | brin 4096 |
. . . . 5
| |
| 6 | 4, 5 | bitr3i 186 |
. . . 4
|
| 7 | vex 2775 |
. . . . . . . . 9
| |
| 8 | 7 | brres 4965 |
. . . . . . . 8
|
| 9 | poirr 4354 |
. . . . . . . . . . 11
| |
| 10 | 7 | ideq 4830 |
. . . . . . . . . . . . 13
|
| 11 | breq2 4048 |
. . . . . . . . . . . . 13
| |
| 12 | 10, 11 | sylbi 121 |
. . . . . . . . . . . 12
|
| 13 | 12 | notbid 669 |
. . . . . . . . . . 11
|
| 14 | 9, 13 | syl5ibcom 155 |
. . . . . . . . . 10
|
| 15 | 14 | expimpd 363 |
. . . . . . . . 9
|
| 16 | 15 | ancomsd 269 |
. . . . . . . 8
|
| 17 | 8, 16 | biimtrid 152 |
. . . . . . 7
|
| 18 | 17 | con2d 625 |
. . . . . 6
|
| 19 | imnan 692 |
. . . . . 6
| |
| 20 | 18, 19 | sylib 122 |
. . . . 5
|
| 21 | 20 | pm2.21d 620 |
. . . 4
|
| 22 | 6, 21 | biimtrid 152 |
. . 3
|
| 23 | 3, 22 | relssdv 4767 |
. 2
|
| 24 | ss0 3501 |
. 2
| |
| 25 | 23, 24 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-br 4045 df-opab 4106 df-id 4340 df-po 4343 df-xp 4681 df-rel 4682 df-res 4687 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |