| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > poirr2 | Unicode version | ||
| Description: A partial order relation is irreflexive. (Contributed by Mario Carneiro, 2-Nov-2015.) | 
| Ref | Expression | 
|---|---|
| poirr2 | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | relres 4974 | 
. . . 4
 | |
| 2 | relin2 4782 | 
. . . 4
 | |
| 3 | 1, 2 | mp1i 10 | 
. . 3
 | 
| 4 | df-br 4034 | 
. . . . 5
 | |
| 5 | brin 4085 | 
. . . . 5
 | |
| 6 | 4, 5 | bitr3i 186 | 
. . . 4
 | 
| 7 | vex 2766 | 
. . . . . . . . 9
 | |
| 8 | 7 | brres 4952 | 
. . . . . . . 8
 | 
| 9 | poirr 4342 | 
. . . . . . . . . . 11
 | |
| 10 | 7 | ideq 4818 | 
. . . . . . . . . . . . 13
 | 
| 11 | breq2 4037 | 
. . . . . . . . . . . . 13
 | |
| 12 | 10, 11 | sylbi 121 | 
. . . . . . . . . . . 12
 | 
| 13 | 12 | notbid 668 | 
. . . . . . . . . . 11
 | 
| 14 | 9, 13 | syl5ibcom 155 | 
. . . . . . . . . 10
 | 
| 15 | 14 | expimpd 363 | 
. . . . . . . . 9
 | 
| 16 | 15 | ancomsd 269 | 
. . . . . . . 8
 | 
| 17 | 8, 16 | biimtrid 152 | 
. . . . . . 7
 | 
| 18 | 17 | con2d 625 | 
. . . . . 6
 | 
| 19 | imnan 691 | 
. . . . . 6
 | |
| 20 | 18, 19 | sylib 122 | 
. . . . 5
 | 
| 21 | 20 | pm2.21d 620 | 
. . . 4
 | 
| 22 | 6, 21 | biimtrid 152 | 
. . 3
 | 
| 23 | 3, 22 | relssdv 4755 | 
. 2
 | 
| 24 | ss0 3491 | 
. 2
 | |
| 25 | 23, 24 | syl 14 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:    | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-br 4034 df-opab 4095 df-id 4328 df-po 4331 df-xp 4669 df-rel 4670 df-res 4675 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |