Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > poirr2 | Unicode version |
Description: A partial order relation is irreflexive. (Contributed by Mario Carneiro, 2-Nov-2015.) |
Ref | Expression |
---|---|
poirr2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relres 4928 | . . . 4 | |
2 | relin2 4739 | . . . 4 | |
3 | 1, 2 | mp1i 10 | . . 3 |
4 | df-br 3999 | . . . . 5 | |
5 | brin 4050 | . . . . 5 | |
6 | 4, 5 | bitr3i 186 | . . . 4 |
7 | vex 2738 | . . . . . . . . 9 | |
8 | 7 | brres 4906 | . . . . . . . 8 |
9 | poirr 4301 | . . . . . . . . . . 11 | |
10 | 7 | ideq 4772 | . . . . . . . . . . . . 13 |
11 | breq2 4002 | . . . . . . . . . . . . 13 | |
12 | 10, 11 | sylbi 121 | . . . . . . . . . . . 12 |
13 | 12 | notbid 667 | . . . . . . . . . . 11 |
14 | 9, 13 | syl5ibcom 155 | . . . . . . . . . 10 |
15 | 14 | expimpd 363 | . . . . . . . . 9 |
16 | 15 | ancomsd 269 | . . . . . . . 8 |
17 | 8, 16 | biimtrid 152 | . . . . . . 7 |
18 | 17 | con2d 624 | . . . . . 6 |
19 | imnan 690 | . . . . . 6 | |
20 | 18, 19 | sylib 122 | . . . . 5 |
21 | 20 | pm2.21d 619 | . . . 4 |
22 | 6, 21 | biimtrid 152 | . . 3 |
23 | 3, 22 | relssdv 4712 | . 2 |
24 | ss0 3461 | . 2 | |
25 | 23, 24 | syl 14 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 104 wb 105 wceq 1353 wcel 2146 cin 3126 wss 3127 c0 3420 cop 3592 class class class wbr 3998 cid 4282 wpo 4288 cres 4622 wrel 4625 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ral 2458 df-rex 2459 df-v 2737 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-nul 3421 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-br 3999 df-opab 4060 df-id 4287 df-po 4290 df-xp 4626 df-rel 4627 df-res 4632 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |