Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > poirr2 | Unicode version |
Description: A partial order relation is irreflexive. (Contributed by Mario Carneiro, 2-Nov-2015.) |
Ref | Expression |
---|---|
poirr2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relres 4912 | . . . 4 | |
2 | relin2 4723 | . . . 4 | |
3 | 1, 2 | mp1i 10 | . . 3 |
4 | df-br 3983 | . . . . 5 | |
5 | brin 4034 | . . . . 5 | |
6 | 4, 5 | bitr3i 185 | . . . 4 |
7 | vex 2729 | . . . . . . . . 9 | |
8 | 7 | brres 4890 | . . . . . . . 8 |
9 | poirr 4285 | . . . . . . . . . . 11 | |
10 | 7 | ideq 4756 | . . . . . . . . . . . . 13 |
11 | breq2 3986 | . . . . . . . . . . . . 13 | |
12 | 10, 11 | sylbi 120 | . . . . . . . . . . . 12 |
13 | 12 | notbid 657 | . . . . . . . . . . 11 |
14 | 9, 13 | syl5ibcom 154 | . . . . . . . . . 10 |
15 | 14 | expimpd 361 | . . . . . . . . 9 |
16 | 15 | ancomsd 267 | . . . . . . . 8 |
17 | 8, 16 | syl5bi 151 | . . . . . . 7 |
18 | 17 | con2d 614 | . . . . . 6 |
19 | imnan 680 | . . . . . 6 | |
20 | 18, 19 | sylib 121 | . . . . 5 |
21 | 20 | pm2.21d 609 | . . . 4 |
22 | 6, 21 | syl5bi 151 | . . 3 |
23 | 3, 22 | relssdv 4696 | . 2 |
24 | ss0 3449 | . 2 | |
25 | 23, 24 | syl 14 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 wceq 1343 wcel 2136 cin 3115 wss 3116 c0 3409 cop 3579 class class class wbr 3982 cid 4266 wpo 4272 cres 4606 wrel 4609 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-br 3983 df-opab 4044 df-id 4271 df-po 4274 df-xp 4610 df-rel 4611 df-res 4616 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |