| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > poirr2 | Unicode version | ||
| Description: A partial order relation is irreflexive. (Contributed by Mario Carneiro, 2-Nov-2015.) |
| Ref | Expression |
|---|---|
| poirr2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relres 5006 |
. . . 4
| |
| 2 | relin2 4812 |
. . . 4
| |
| 3 | 1, 2 | mp1i 10 |
. . 3
|
| 4 | df-br 4060 |
. . . . 5
| |
| 5 | brin 4112 |
. . . . 5
| |
| 6 | 4, 5 | bitr3i 186 |
. . . 4
|
| 7 | vex 2779 |
. . . . . . . . 9
| |
| 8 | 7 | brres 4984 |
. . . . . . . 8
|
| 9 | poirr 4372 |
. . . . . . . . . . 11
| |
| 10 | 7 | ideq 4848 |
. . . . . . . . . . . . 13
|
| 11 | breq2 4063 |
. . . . . . . . . . . . 13
| |
| 12 | 10, 11 | sylbi 121 |
. . . . . . . . . . . 12
|
| 13 | 12 | notbid 669 |
. . . . . . . . . . 11
|
| 14 | 9, 13 | syl5ibcom 155 |
. . . . . . . . . 10
|
| 15 | 14 | expimpd 363 |
. . . . . . . . 9
|
| 16 | 15 | ancomsd 269 |
. . . . . . . 8
|
| 17 | 8, 16 | biimtrid 152 |
. . . . . . 7
|
| 18 | 17 | con2d 625 |
. . . . . 6
|
| 19 | imnan 692 |
. . . . . 6
| |
| 20 | 18, 19 | sylib 122 |
. . . . 5
|
| 21 | 20 | pm2.21d 620 |
. . . 4
|
| 22 | 6, 21 | biimtrid 152 |
. . 3
|
| 23 | 3, 22 | relssdv 4785 |
. 2
|
| 24 | ss0 3509 |
. 2
| |
| 25 | 23, 24 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-v 2778 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-br 4060 df-opab 4122 df-id 4358 df-po 4361 df-xp 4699 df-rel 4700 df-res 4705 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |