ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reldif Unicode version

Theorem reldif 4767
Description: A difference cutting down a relation is a relation. (Contributed by NM, 31-Mar-1998.)
Assertion
Ref Expression
reldif  |-  ( Rel 
A  ->  Rel  ( A 
\  B ) )

Proof of Theorem reldif
StepHypRef Expression
1 difss 3276 . 2  |-  ( A 
\  B )  C_  A
2 relss 4734 . 2  |-  ( ( A  \  B ) 
C_  A  ->  ( Rel  A  ->  Rel  ( A 
\  B ) ) )
31, 2ax-mp 5 1  |-  ( Rel 
A  ->  Rel  ( A 
\  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \ cdif 3141    C_ wss 3144   Rel wrel 4652
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2171
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-v 2754  df-dif 3146  df-in 3150  df-ss 3157  df-rel 4654
This theorem is referenced by:  difopab  4781
  Copyright terms: Public domain W3C validator