ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reldif Unicode version

Theorem reldif 4659
Description: A difference cutting down a relation is a relation. (Contributed by NM, 31-Mar-1998.)
Assertion
Ref Expression
reldif  |-  ( Rel 
A  ->  Rel  ( A 
\  B ) )

Proof of Theorem reldif
StepHypRef Expression
1 difss 3202 . 2  |-  ( A 
\  B )  C_  A
2 relss 4626 . 2  |-  ( ( A  \  B ) 
C_  A  ->  ( Rel  A  ->  Rel  ( A 
\  B ) ) )
31, 2ax-mp 5 1  |-  ( Rel 
A  ->  Rel  ( A 
\  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \ cdif 3068    C_ wss 3071   Rel wrel 4544
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121
This theorem depends on definitions:  df-bi 116  df-tru 1334  df-nf 1437  df-sb 1736  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-v 2688  df-dif 3073  df-in 3077  df-ss 3084  df-rel 4546
This theorem is referenced by:  difopab  4672
  Copyright terms: Public domain W3C validator