ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reldif Unicode version

Theorem reldif 4731
Description: A difference cutting down a relation is a relation. (Contributed by NM, 31-Mar-1998.)
Assertion
Ref Expression
reldif  |-  ( Rel 
A  ->  Rel  ( A 
\  B ) )

Proof of Theorem reldif
StepHypRef Expression
1 difss 3253 . 2  |-  ( A 
\  B )  C_  A
2 relss 4698 . 2  |-  ( ( A  \  B ) 
C_  A  ->  ( Rel  A  ->  Rel  ( A 
\  B ) ) )
31, 2ax-mp 5 1  |-  ( Rel 
A  ->  Rel  ( A 
\  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \ cdif 3118    C_ wss 3121   Rel wrel 4616
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-v 2732  df-dif 3123  df-in 3127  df-ss 3134  df-rel 4618
This theorem is referenced by:  difopab  4744
  Copyright terms: Public domain W3C validator