| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > relopabv | Unicode version | ||
| Description: A class of ordered pairs is a relation. For a version without a disjoint variable condition, see relopab 4825. (Contributed by SN, 8-Sep-2024.) |
| Ref | Expression |
|---|---|
| relopabv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2209 |
. 2
| |
| 2 | 1 | relopabiv 4822 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-ext 2191 |
| This theorem depends on definitions: df-bi 117 df-nf 1487 df-sb 1789 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-v 2781 df-in 3183 df-ss 3190 df-opab 4125 df-xp 4702 df-rel 4703 |
| This theorem is referenced by: lgsquadlem3 15723 |
| Copyright terms: Public domain | W3C validator |