ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  relopabv Unicode version

Theorem relopabv 4790
Description: A class of ordered pairs is a relation. For a version without a disjoint variable condition, see relopab 4792. (Contributed by SN, 8-Sep-2024.)
Assertion
Ref Expression
relopabv  |-  Rel  { <. x ,  y >.  |  ph }
Distinct variable group:    x, y
Allowed substitution hints:    ph( x, y)

Proof of Theorem relopabv
StepHypRef Expression
1 eqid 2196 . 2  |-  { <. x ,  y >.  |  ph }  =  { <. x ,  y >.  |  ph }
21relopabiv 4789 1  |-  Rel  { <. x ,  y >.  |  ph }
Colors of variables: wff set class
Syntax hints:   {copab 4093   Rel wrel 4668
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-in 3163  df-ss 3170  df-opab 4095  df-xp 4669  df-rel 4670
This theorem is referenced by:  lgsquadlem3  15320
  Copyright terms: Public domain W3C validator