HomeHome Intuitionistic Logic Explorer
Theorem List (p. 49 of 156)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 4801-4900   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremeliunxp 4801* Membership in a union of cross products. Analogue of elxp 4676 for nonconstant  B ( x ). (Contributed by Mario Carneiro, 29-Dec-2014.)
 |-  ( C  e.  U_ x  e.  A  ( { x }  X.  B ) 
 <-> 
 E. x E. y
 ( C  =  <. x ,  y >.  /\  ( x  e.  A  /\  y  e.  B )
 ) )
 
Theoremopeliunxp2 4802* Membership in a union of cross products. (Contributed by Mario Carneiro, 14-Feb-2015.)
 |-  ( x  =  C  ->  B  =  E )   =>    |-  ( <. C ,  D >.  e.  U_ x  e.  A  ( { x }  X.  B )  <->  ( C  e.  A  /\  D  e.  E ) )
 
Theoremraliunxp 4803* Write a double restricted quantification as one universal quantifier. In this version of ralxp 4805, 
B ( y ) is not assumed to be constant. (Contributed by Mario Carneiro, 29-Dec-2014.)
 |-  ( x  =  <. y ,  z >.  ->  ( ph 
 <->  ps ) )   =>    |-  ( A. x  e.  U_  y  e.  A  ( { y }  X.  B ) ph  <->  A. y  e.  A  A. z  e.  B  ps )
 
Theoremrexiunxp 4804* Write a double restricted quantification as one universal quantifier. In this version of rexxp 4806, 
B ( y ) is not assumed to be constant. (Contributed by Mario Carneiro, 14-Feb-2015.)
 |-  ( x  =  <. y ,  z >.  ->  ( ph 
 <->  ps ) )   =>    |-  ( E. x  e.  U_  y  e.  A  ( { y }  X.  B ) ph  <->  E. y  e.  A  E. z  e.  B  ps )
 
Theoremralxp 4805* Universal quantification restricted to a cross product is equivalent to a double restricted quantification. The hypothesis specifies an implicit substitution. (Contributed by NM, 7-Feb-2004.) (Revised by Mario Carneiro, 29-Dec-2014.)
 |-  ( x  =  <. y ,  z >.  ->  ( ph 
 <->  ps ) )   =>    |-  ( A. x  e.  ( A  X.  B ) ph  <->  A. y  e.  A  A. z  e.  B  ps )
 
Theoremrexxp 4806* Existential quantification restricted to a cross product is equivalent to a double restricted quantification. (Contributed by NM, 11-Nov-1995.) (Revised by Mario Carneiro, 14-Feb-2015.)
 |-  ( x  =  <. y ,  z >.  ->  ( ph 
 <->  ps ) )   =>    |-  ( E. x  e.  ( A  X.  B ) ph  <->  E. y  e.  A  E. z  e.  B  ps )
 
Theoremdjussxp 4807* Disjoint union is a subset of a cross product. (Contributed by Stefan O'Rear, 21-Nov-2014.)
 |-  U_ x  e.  A  ( { x }  X.  B )  C_  ( A  X.  _V )
 
Theoremralxpf 4808* Version of ralxp 4805 with bound-variable hypotheses. (Contributed by NM, 18-Aug-2006.) (Revised by Mario Carneiro, 15-Oct-2016.)
 |- 
 F/ y ph   &    |-  F/ z ph   &    |-  F/ x ps   &    |-  ( x  = 
 <. y ,  z >.  ->  ( ph  <->  ps ) )   =>    |-  ( A. x  e.  ( A  X.  B ) ph  <->  A. y  e.  A  A. z  e.  B  ps )
 
Theoremrexxpf 4809* Version of rexxp 4806 with bound-variable hypotheses. (Contributed by NM, 19-Dec-2008.) (Revised by Mario Carneiro, 15-Oct-2016.)
 |- 
 F/ y ph   &    |-  F/ z ph   &    |-  F/ x ps   &    |-  ( x  = 
 <. y ,  z >.  ->  ( ph  <->  ps ) )   =>    |-  ( E. x  e.  ( A  X.  B ) ph  <->  E. y  e.  A  E. z  e.  B  ps )
 
Theoremiunxpf 4810* Indexed union on a cross product is equals a double indexed union. The hypothesis specifies an implicit substitution. (Contributed by NM, 19-Dec-2008.)
 |-  F/_ y C   &    |-  F/_ z C   &    |-  F/_ x D   &    |-  ( x  =  <. y ,  z >.  ->  C  =  D )   =>    |-  U_ x  e.  ( A  X.  B ) C  =  U_ y  e.  A  U_ z  e.  B  D
 
Theoremopabbi2dv 4811* Deduce equality of a relation and an ordered-pair class builder. Compare abbi2dv 2312. (Contributed by NM, 24-Feb-2014.)
 |- 
 Rel  A   &    |-  ( ph  ->  (
 <. x ,  y >.  e.  A  <->  ps ) )   =>    |-  ( ph  ->  A  =  { <. x ,  y >.  |  ps }
 )
 
Theoremrelop 4812* A necessary and sufficient condition for a Kuratowski ordered pair to be a relation. (Contributed by NM, 3-Jun-2008.) (Avoid depending on this detail.)
 |-  A  e.  _V   &    |-  B  e.  _V   =>    |-  ( Rel  <. A ,  B >. 
 <-> 
 E. x E. y
 ( A  =  { x }  /\  B  =  { x ,  y }
 ) )
 
Theoremideqg 4813 For sets, the identity relation is the same as equality. (Contributed by NM, 30-Apr-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
 |-  ( B  e.  V  ->  ( A  _I  B  <->  A  =  B ) )
 
Theoremideq 4814 For sets, the identity relation is the same as equality. (Contributed by NM, 13-Aug-1995.)
 |-  B  e.  _V   =>    |-  ( A  _I  B 
 <->  A  =  B )
 
Theoremididg 4815 A set is identical to itself. (Contributed by NM, 28-May-2008.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
 |-  ( A  e.  V  ->  A  _I  A )
 
Theoremissetid 4816 Two ways of expressing set existence. (Contributed by NM, 16-Feb-2008.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) (Revised by Mario Carneiro, 26-Apr-2015.)
 |-  ( A  e.  _V  <->  A  _I  A )
 
Theoremcoss1 4817 Subclass theorem for composition. (Contributed by FL, 30-Dec-2010.)
 |-  ( A  C_  B  ->  ( A  o.  C )  C_  ( B  o.  C ) )
 
Theoremcoss2 4818 Subclass theorem for composition. (Contributed by NM, 5-Apr-2013.)
 |-  ( A  C_  B  ->  ( C  o.  A )  C_  ( C  o.  B ) )
 
Theoremcoeq1 4819 Equality theorem for composition of two classes. (Contributed by NM, 3-Jan-1997.)
 |-  ( A  =  B  ->  ( A  o.  C )  =  ( B  o.  C ) )
 
Theoremcoeq2 4820 Equality theorem for composition of two classes. (Contributed by NM, 3-Jan-1997.)
 |-  ( A  =  B  ->  ( C  o.  A )  =  ( C  o.  B ) )
 
Theoremcoeq1i 4821 Equality inference for composition of two classes. (Contributed by NM, 16-Nov-2000.)
 |-  A  =  B   =>    |-  ( A  o.  C )  =  ( B  o.  C )
 
Theoremcoeq2i 4822 Equality inference for composition of two classes. (Contributed by NM, 16-Nov-2000.)
 |-  A  =  B   =>    |-  ( C  o.  A )  =  ( C  o.  B )
 
Theoremcoeq1d 4823 Equality deduction for composition of two classes. (Contributed by NM, 16-Nov-2000.)
 |-  ( ph  ->  A  =  B )   =>    |-  ( ph  ->  ( A  o.  C )  =  ( B  o.  C ) )
 
Theoremcoeq2d 4824 Equality deduction for composition of two classes. (Contributed by NM, 16-Nov-2000.)
 |-  ( ph  ->  A  =  B )   =>    |-  ( ph  ->  ( C  o.  A )  =  ( C  o.  B ) )
 
Theoremcoeq12i 4825 Equality inference for composition of two classes. (Contributed by FL, 7-Jun-2012.)
 |-  A  =  B   &    |-  C  =  D   =>    |-  ( A  o.  C )  =  ( B  o.  D )
 
Theoremcoeq12d 4826 Equality deduction for composition of two classes. (Contributed by FL, 7-Jun-2012.)
 |-  ( ph  ->  A  =  B )   &    |-  ( ph  ->  C  =  D )   =>    |-  ( ph  ->  ( A  o.  C )  =  ( B  o.  D ) )
 
Theoremnfco 4827 Bound-variable hypothesis builder for function value. (Contributed by NM, 1-Sep-1999.)
 |-  F/_ x A   &    |-  F/_ x B   =>    |-  F/_ x ( A  o.  B )
 
Theoremelco 4828* Elements of a composed relation. (Contributed by BJ, 10-Jul-2022.)
 |-  ( A  e.  ( R  o.  S )  <->  E. x E. y E. z ( A  =  <. x ,  z >.  /\  ( x S y 
 /\  y R z ) ) )
 
Theorembrcog 4829* Ordered pair membership in a composition. (Contributed by NM, 24-Feb-2015.)
 |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A ( C  o.  D ) B  <->  E. x ( A D x  /\  x C B ) ) )
 
Theoremopelco2g 4830* Ordered pair membership in a composition. (Contributed by NM, 27-Jan-1997.) (Revised by Mario Carneiro, 24-Feb-2015.)
 |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( <. A ,  B >.  e.  ( C  o.  D )  <->  E. x ( <. A ,  x >.  e.  D  /\  <. x ,  B >.  e.  C ) ) )
 
Theorembrcogw 4831 Ordered pair membership in a composition. (Contributed by Thierry Arnoux, 14-Jan-2018.)
 |-  ( ( ( A  e.  V  /\  B  e.  W  /\  X  e.  Z )  /\  ( A D X  /\  X C B ) )  ->  A ( C  o.  D ) B )
 
Theoremeqbrrdva 4832* Deduction from extensionality principle for relations, given an equivalence only on the relation's domain and range. (Contributed by Thierry Arnoux, 28-Nov-2017.)
 |-  ( ph  ->  A  C_  ( C  X.  D ) )   &    |-  ( ph  ->  B 
 C_  ( C  X.  D ) )   &    |-  (
 ( ph  /\  x  e.  C  /\  y  e.  D )  ->  ( x A y  <->  x B y ) )   =>    |-  ( ph  ->  A  =  B )
 
Theorembrco 4833* Binary relation on a composition. (Contributed by NM, 21-Sep-2004.) (Revised by Mario Carneiro, 24-Feb-2015.)
 |-  A  e.  _V   &    |-  B  e.  _V   =>    |-  ( A ( C  o.  D ) B  <->  E. x ( A D x  /\  x C B ) )
 
Theoremopelco 4834* Ordered pair membership in a composition. (Contributed by NM, 27-Dec-1996.) (Revised by Mario Carneiro, 24-Feb-2015.)
 |-  A  e.  _V   &    |-  B  e.  _V   =>    |-  ( <. A ,  B >.  e.  ( C  o.  D )  <->  E. x ( A D x  /\  x C B ) )
 
Theoremcnvss 4835 Subset theorem for converse. (Contributed by NM, 22-Mar-1998.)
 |-  ( A  C_  B  ->  `' A  C_  `' B )
 
Theoremcnveq 4836 Equality theorem for converse. (Contributed by NM, 13-Aug-1995.)
 |-  ( A  =  B  ->  `' A  =  `' B )
 
Theoremcnveqi 4837 Equality inference for converse. (Contributed by NM, 23-Dec-2008.)
 |-  A  =  B   =>    |-  `' A  =  `' B
 
Theoremcnveqd 4838 Equality deduction for converse. (Contributed by NM, 6-Dec-2013.)
 |-  ( ph  ->  A  =  B )   =>    |-  ( ph  ->  `' A  =  `' B )
 
Theoremelcnv 4839* Membership in a converse. Equation 5 of [Suppes] p. 62. (Contributed by NM, 24-Mar-1998.)
 |-  ( A  e.  `' R 
 <-> 
 E. x E. y
 ( A  =  <. x ,  y >.  /\  y R x ) )
 
Theoremelcnv2 4840* Membership in a converse. Equation 5 of [Suppes] p. 62. (Contributed by NM, 11-Aug-2004.)
 |-  ( A  e.  `' R 
 <-> 
 E. x E. y
 ( A  =  <. x ,  y >.  /\  <. y ,  x >.  e.  R ) )
 
Theoremnfcnv 4841 Bound-variable hypothesis builder for converse. (Contributed by NM, 31-Jan-2004.) (Revised by Mario Carneiro, 15-Oct-2016.)
 |-  F/_ x A   =>    |-  F/_ x `' A
 
Theoremopelcnvg 4842 Ordered-pair membership in converse. (Contributed by NM, 13-May-1999.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
 |-  ( ( A  e.  C  /\  B  e.  D )  ->  ( <. A ,  B >.  e.  `' R  <->  <. B ,  A >.  e.  R ) )
 
Theorembrcnvg 4843 The converse of a binary relation swaps arguments. Theorem 11 of [Suppes] p. 61. (Contributed by NM, 10-Oct-2005.)
 |-  ( ( A  e.  C  /\  B  e.  D )  ->  ( A `' R B  <->  B R A ) )
 
Theoremopelcnv 4844 Ordered-pair membership in converse. (Contributed by NM, 13-Aug-1995.)
 |-  A  e.  _V   &    |-  B  e.  _V   =>    |-  ( <. A ,  B >.  e.  `' R  <->  <. B ,  A >.  e.  R )
 
Theorembrcnv 4845 The converse of a binary relation swaps arguments. Theorem 11 of [Suppes] p. 61. (Contributed by NM, 13-Aug-1995.)
 |-  A  e.  _V   &    |-  B  e.  _V   =>    |-  ( A `' R B 
 <->  B R A )
 
Theoremcsbcnvg 4846 Move class substitution in and out of the converse of a function. (Contributed by Thierry Arnoux, 8-Feb-2017.)
 |-  ( A  e.  V  ->  `' [_ A  /  x ]_ F  =  [_ A  /  x ]_ `' F )
 
Theoremcnvco 4847 Distributive law of converse over class composition. Theorem 26 of [Suppes] p. 64. (Contributed by NM, 19-Mar-1998.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
 |-  `' ( A  o.  B )  =  ( `' B  o.  `' A )
 
Theoremcnvuni 4848* The converse of a class union is the (indexed) union of the converses of its members. (Contributed by NM, 11-Aug-2004.)
 |-  `' U. A  =  U_ x  e.  A  `' x
 
Theoremdfdm3 4849* Alternate definition of domain. Definition 6.5(1) of [TakeutiZaring] p. 24. (Contributed by NM, 28-Dec-1996.)
 |- 
 dom  A  =  { x  |  E. y <. x ,  y >.  e.  A }
 
Theoremdfrn2 4850* Alternate definition of range. Definition 4 of [Suppes] p. 60. (Contributed by NM, 27-Dec-1996.)
 |- 
 ran  A  =  {
 y  |  E. x  x A y }
 
Theoremdfrn3 4851* Alternate definition of range. Definition 6.5(2) of [TakeutiZaring] p. 24. (Contributed by NM, 28-Dec-1996.)
 |- 
 ran  A  =  {
 y  |  E. x <. x ,  y >.  e.  A }
 
Theoremelrn2g 4852* Membership in a range. (Contributed by Scott Fenton, 2-Feb-2011.)
 |-  ( A  e.  V  ->  ( A  e.  ran  B  <->  E. x <. x ,  A >.  e.  B ) )
 
Theoremelrng 4853* Membership in a range. (Contributed by Scott Fenton, 2-Feb-2011.)
 |-  ( A  e.  V  ->  ( A  e.  ran  B  <->  E. x  x B A ) )
 
Theoremdfdm4 4854 Alternate definition of domain. (Contributed by NM, 28-Dec-1996.)
 |- 
 dom  A  =  ran  `' A
 
Theoremdfdmf 4855* Definition of domain, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 8-Mar-1995.) (Revised by Mario Carneiro, 15-Oct-2016.)
 |-  F/_ x A   &    |-  F/_ y A   =>    |-  dom  A  =  { x  |  E. y  x A y }
 
Theoremcsbdmg 4856 Distribute proper substitution through the domain of a class. (Contributed by Jim Kingdon, 8-Dec-2018.)
 |-  ( A  e.  V  -> 
 [_ A  /  x ]_
 dom  B  =  dom  [_ A  /  x ]_ B )
 
Theoremeldmg 4857* Domain membership. Theorem 4 of [Suppes] p. 59. (Contributed by Mario Carneiro, 9-Jul-2014.)
 |-  ( A  e.  V  ->  ( A  e.  dom  B  <->  E. y  A B y ) )
 
Theoremeldm2g 4858* Domain membership. Theorem 4 of [Suppes] p. 59. (Contributed by NM, 27-Jan-1997.) (Revised by Mario Carneiro, 9-Jul-2014.)
 |-  ( A  e.  V  ->  ( A  e.  dom  B  <->  E. y <. A ,  y >.  e.  B ) )
 
Theoremeldm 4859* Membership in a domain. Theorem 4 of [Suppes] p. 59. (Contributed by NM, 2-Apr-2004.)
 |-  A  e.  _V   =>    |-  ( A  e.  dom 
 B 
 <-> 
 E. y  A B y )
 
Theoremeldm2 4860* Membership in a domain. Theorem 4 of [Suppes] p. 59. (Contributed by NM, 1-Aug-1994.)
 |-  A  e.  _V   =>    |-  ( A  e.  dom 
 B 
 <-> 
 E. y <. A ,  y >.  e.  B )
 
Theoremdmss 4861 Subset theorem for domain. (Contributed by NM, 11-Aug-1994.)
 |-  ( A  C_  B  ->  dom  A  C_  dom  B )
 
Theoremdmeq 4862 Equality theorem for domain. (Contributed by NM, 11-Aug-1994.)
 |-  ( A  =  B  ->  dom  A  =  dom  B )
 
Theoremdmeqi 4863 Equality inference for domain. (Contributed by NM, 4-Mar-2004.)
 |-  A  =  B   =>    |-  dom  A  =  dom  B
 
Theoremdmeqd 4864 Equality deduction for domain. (Contributed by NM, 4-Mar-2004.)
 |-  ( ph  ->  A  =  B )   =>    |-  ( ph  ->  dom  A  =  dom  B )
 
Theoremopeldm 4865 Membership of first of an ordered pair in a domain. (Contributed by NM, 30-Jul-1995.)
 |-  A  e.  _V   &    |-  B  e.  _V   =>    |-  ( <. A ,  B >.  e.  C  ->  A  e.  dom  C )
 
Theorembreldm 4866 Membership of first of a binary relation in a domain. (Contributed by NM, 30-Jul-1995.)
 |-  A  e.  _V   &    |-  B  e.  _V   =>    |-  ( A R B  ->  A  e.  dom  R )
 
Theoremopeldmg 4867 Membership of first of an ordered pair in a domain. (Contributed by Jim Kingdon, 9-Jul-2019.)
 |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( <. A ,  B >.  e.  C  ->  A  e.  dom  C )
 )
 
Theorembreldmg 4868 Membership of first of a binary relation in a domain. (Contributed by NM, 21-Mar-2007.)
 |-  ( ( A  e.  C  /\  B  e.  D  /\  A R B ) 
 ->  A  e.  dom  R )
 
Theoremdmun 4869 The domain of a union is the union of domains. Exercise 56(a) of [Enderton] p. 65. (Contributed by NM, 12-Aug-1994.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
 |- 
 dom  ( A  u.  B )  =  ( dom  A  u.  dom  B )
 
Theoremdmin 4870 The domain of an intersection belong to the intersection of domains. Theorem 6 of [Suppes] p. 60. (Contributed by NM, 15-Sep-2004.)
 |- 
 dom  ( A  i^i  B )  C_  ( dom  A  i^i  dom  B )
 
Theoremdmiun 4871 The domain of an indexed union. (Contributed by Mario Carneiro, 26-Apr-2016.)
 |- 
 dom  U_ x  e.  A  B  =  U_ x  e.  A  dom  B
 
Theoremdmuni 4872* The domain of a union. Part of Exercise 8 of [Enderton] p. 41. (Contributed by NM, 3-Feb-2004.)
 |- 
 dom  U. A  =  U_ x  e.  A  dom  x
 
Theoremdmopab 4873* The domain of a class of ordered pairs. (Contributed by NM, 16-May-1995.) (Revised by Mario Carneiro, 4-Dec-2016.)
 |- 
 dom  { <. x ,  y >.  |  ph }  =  { x  |  E. y ph }
 
Theoremdmopabss 4874* Upper bound for the domain of a restricted class of ordered pairs. (Contributed by NM, 31-Jan-2004.)
 |- 
 dom  { <. x ,  y >.  |  ( x  e.  A  /\  ph ) }  C_  A
 
Theoremdmopab3 4875* The domain of a restricted class of ordered pairs. (Contributed by NM, 31-Jan-2004.)
 |-  ( A. x  e.  A  E. y ph  <->  dom  {
 <. x ,  y >.  |  ( x  e.  A  /\  ph ) }  =  A )
 
Theoremdm0 4876 The domain of the empty set is empty. Part of Theorem 3.8(v) of [Monk1] p. 36. (Contributed by NM, 4-Jul-1994.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
 |- 
 dom  (/)  =  (/)
 
Theoremdmi 4877 The domain of the identity relation is the universe. (Contributed by NM, 30-Apr-1998.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
 |- 
 dom  _I  =  _V
 
Theoremdmv 4878 The domain of the universe is the universe. (Contributed by NM, 8-Aug-2003.)
 |- 
 dom  _V  =  _V
 
Theoremdm0rn0 4879 An empty domain implies an empty range. For a similar theorem for whether the domain and range are inhabited, see dmmrnm 4881. (Contributed by NM, 21-May-1998.)
 |-  ( dom  A  =  (/)  <->  ran 
 A  =  (/) )
 
Theoremreldm0 4880 A relation is empty iff its domain is empty. (Contributed by NM, 15-Sep-2004.)
 |-  ( Rel  A  ->  ( A  =  (/)  <->  dom  A  =  (/) ) )
 
Theoremdmmrnm 4881* A domain is inhabited if and only if the range is inhabited. (Contributed by Jim Kingdon, 15-Dec-2018.)
 |-  ( E. x  x  e.  dom  A  <->  E. y  y  e. 
 ran  A )
 
Theoremdmxpm 4882* The domain of a cross product. Part of Theorem 3.13(x) of [Monk1] p. 37. (Contributed by NM, 28-Jul-1995.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
 |-  ( E. x  x  e.  B  ->  dom  ( A  X.  B )  =  A )
 
Theoremdmxpid 4883 The domain of a square Cartesian product. (Contributed by NM, 28-Jul-1995.) (Revised by Jim Kingdon, 11-Apr-2023.)
 |- 
 dom  ( A  X.  A )  =  A
 
Theoremdmxpin 4884 The domain of the intersection of two square Cartesian products. Unlike dmin 4870, equality holds. (Contributed by NM, 29-Jan-2008.)
 |- 
 dom  ( ( A  X.  A )  i^i  ( B  X.  B ) )  =  ( A  i^i  B )
 
Theoremxpid11 4885 The Cartesian product of a class with itself is one-to-one. (Contributed by NM, 5-Nov-2006.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
 |-  ( ( A  X.  A )  =  ( B  X.  B )  <->  A  =  B )
 
Theoremdmcnvcnv 4886 The domain of the double converse of a class (which doesn't have to be a relation as in dfrel2 5116). (Contributed by NM, 8-Apr-2007.)
 |- 
 dom  `' `' A  =  dom  A
 
Theoremrncnvcnv 4887 The range of the double converse of a class. (Contributed by NM, 8-Apr-2007.)
 |- 
 ran  `' `' A  =  ran  A
 
Theoremelreldm 4888 The first member of an ordered pair in a relation belongs to the domain of the relation. (Contributed by NM, 28-Jul-2004.)
 |-  ( ( Rel  A  /\  B  e.  A ) 
 ->  |^| |^| B  e.  dom  A )
 
Theoremrneq 4889 Equality theorem for range. (Contributed by NM, 29-Dec-1996.)
 |-  ( A  =  B  ->  ran  A  =  ran  B )
 
Theoremrneqi 4890 Equality inference for range. (Contributed by NM, 4-Mar-2004.)
 |-  A  =  B   =>    |-  ran  A  =  ran  B
 
Theoremrneqd 4891 Equality deduction for range. (Contributed by NM, 4-Mar-2004.)
 |-  ( ph  ->  A  =  B )   =>    |-  ( ph  ->  ran  A  =  ran  B )
 
Theoremrnss 4892 Subset theorem for range. (Contributed by NM, 22-Mar-1998.)
 |-  ( A  C_  B  ->  ran  A  C_  ran  B )
 
Theorembrelrng 4893 The second argument of a binary relation belongs to its range. (Contributed by NM, 29-Jun-2008.)
 |-  ( ( A  e.  F  /\  B  e.  G  /\  A C B ) 
 ->  B  e.  ran  C )
 
Theoremopelrng 4894 Membership of second member of an ordered pair in a range. (Contributed by Jim Kingdon, 26-Jan-2019.)
 |-  ( ( A  e.  F  /\  B  e.  G  /\  <. A ,  B >.  e.  C )  ->  B  e.  ran  C )
 
Theorembrelrn 4895 The second argument of a binary relation belongs to its range. (Contributed by NM, 13-Aug-2004.)
 |-  A  e.  _V   &    |-  B  e.  _V   =>    |-  ( A C B  ->  B  e.  ran  C )
 
Theoremopelrn 4896 Membership of second member of an ordered pair in a range. (Contributed by NM, 23-Feb-1997.)
 |-  A  e.  _V   &    |-  B  e.  _V   =>    |-  ( <. A ,  B >.  e.  C  ->  B  e.  ran  C )
 
Theoremreleldm 4897 The first argument of a binary relation belongs to its domain. (Contributed by NM, 2-Jul-2008.)
 |-  ( ( Rel  R  /\  A R B ) 
 ->  A  e.  dom  R )
 
Theoremrelelrn 4898 The second argument of a binary relation belongs to its range. (Contributed by NM, 2-Jul-2008.)
 |-  ( ( Rel  R  /\  A R B ) 
 ->  B  e.  ran  R )
 
Theoremreleldmb 4899* Membership in a domain. (Contributed by Mario Carneiro, 5-Nov-2015.)
 |-  ( Rel  R  ->  ( A  e.  dom  R  <->  E. x  A R x ) )
 
Theoremrelelrnb 4900* Membership in a range. (Contributed by Mario Carneiro, 5-Nov-2015.)
 |-  ( Rel  R  ->  ( A  e.  ran  R  <->  E. x  x R A ) )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15574
  Copyright terms: Public domain < Previous  Next >