HomeHome Intuitionistic Logic Explorer
Theorem List (p. 49 of 133)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 4801-4900   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremrnex 4801 The range of a set is a set. Corollary 6.8(3) of [TakeutiZaring] p. 26. Similar to Lemma 3D of [Enderton] p. 41. (Contributed by NM, 7-Jul-2008.)
 |-  A  e.  _V   =>    |-  ran  A  e.  _V
 
Theoremiprc 4802 The identity function is a proper class. This means, for example, that we cannot use it as a member of the class of continuous functions unless it is restricted to a set. (Contributed by NM, 1-Jan-2007.)
 |- 
 -.  _I  e.  _V
 
Theoremdmcoss 4803 Domain of a composition. Theorem 21 of [Suppes] p. 63. (Contributed by NM, 19-Mar-1998.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
 |- 
 dom  ( A  o.  B )  C_  dom  B
 
Theoremrncoss 4804 Range of a composition. (Contributed by NM, 19-Mar-1998.)
 |- 
 ran  ( A  o.  B )  C_  ran  A
 
Theoremdmcosseq 4805 Domain of a composition. (Contributed by NM, 28-May-1998.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
 |-  ( ran  B  C_  dom 
 A  ->  dom  ( A  o.  B )  = 
 dom  B )
 
Theoremdmcoeq 4806 Domain of a composition. (Contributed by NM, 19-Mar-1998.)
 |-  ( dom  A  =  ran  B  ->  dom  ( A  o.  B )  = 
 dom  B )
 
Theoremrncoeq 4807 Range of a composition. (Contributed by NM, 19-Mar-1998.)
 |-  ( dom  A  =  ran  B  ->  ran  ( A  o.  B )  = 
 ran  A )
 
Theoremreseq1 4808 Equality theorem for restrictions. (Contributed by NM, 7-Aug-1994.)
 |-  ( A  =  B  ->  ( A  |`  C )  =  ( B  |`  C ) )
 
Theoremreseq2 4809 Equality theorem for restrictions. (Contributed by NM, 8-Aug-1994.)
 |-  ( A  =  B  ->  ( C  |`  A )  =  ( C  |`  B ) )
 
Theoremreseq1i 4810 Equality inference for restrictions. (Contributed by NM, 21-Oct-2014.)
 |-  A  =  B   =>    |-  ( A  |`  C )  =  ( B  |`  C )
 
Theoremreseq2i 4811 Equality inference for restrictions. (Contributed by Paul Chapman, 22-Jun-2011.)
 |-  A  =  B   =>    |-  ( C  |`  A )  =  ( C  |`  B )
 
Theoremreseq12i 4812 Equality inference for restrictions. (Contributed by NM, 21-Oct-2014.)
 |-  A  =  B   &    |-  C  =  D   =>    |-  ( A  |`  C )  =  ( B  |`  D )
 
Theoremreseq1d 4813 Equality deduction for restrictions. (Contributed by NM, 21-Oct-2014.)
 |-  ( ph  ->  A  =  B )   =>    |-  ( ph  ->  ( A  |`  C )  =  ( B  |`  C ) )
 
Theoremreseq2d 4814 Equality deduction for restrictions. (Contributed by Paul Chapman, 22-Jun-2011.)
 |-  ( ph  ->  A  =  B )   =>    |-  ( ph  ->  ( C  |`  A )  =  ( C  |`  B ) )
 
Theoremreseq12d 4815 Equality deduction for restrictions. (Contributed by NM, 21-Oct-2014.)
 |-  ( ph  ->  A  =  B )   &    |-  ( ph  ->  C  =  D )   =>    |-  ( ph  ->  ( A  |`  C )  =  ( B  |`  D ) )
 
Theoremnfres 4816 Bound-variable hypothesis builder for restriction. (Contributed by NM, 15-Sep-2003.) (Revised by David Abernethy, 19-Jun-2012.)
 |-  F/_ x A   &    |-  F/_ x B   =>    |-  F/_ x ( A  |`  B )
 
Theoremcsbresg 4817 Distribute proper substitution through the restriction of a class. (Contributed by Alan Sare, 10-Nov-2012.)
 |-  ( A  e.  V  -> 
 [_ A  /  x ]_ ( B  |`  C )  =  ( [_ A  /  x ]_ B  |`  [_ A  /  x ]_ C ) )
 
Theoremres0 4818 A restriction to the empty set is empty. (Contributed by NM, 12-Nov-1994.)
 |-  ( A  |`  (/) )  =  (/)
 
Theoremopelres 4819 Ordered pair membership in a restriction. Exercise 13 of [TakeutiZaring] p. 25. (Contributed by NM, 13-Nov-1995.)
 |-  B  e.  _V   =>    |-  ( <. A ,  B >.  e.  ( C  |`  D )  <->  ( <. A ,  B >.  e.  C  /\  A  e.  D )
 )
 
Theorembrres 4820 Binary relation on a restriction. (Contributed by NM, 12-Dec-2006.)
 |-  B  e.  _V   =>    |-  ( A ( C  |`  D ) B 
 <->  ( A C B  /\  A  e.  D ) )
 
Theoremopelresg 4821 Ordered pair membership in a restriction. Exercise 13 of [TakeutiZaring] p. 25. (Contributed by NM, 14-Oct-2005.)
 |-  ( B  e.  V  ->  ( <. A ,  B >.  e.  ( C  |`  D )  <-> 
 ( <. A ,  B >.  e.  C  /\  A  e.  D ) ) )
 
Theorembrresg 4822 Binary relation on a restriction. (Contributed by Mario Carneiro, 4-Nov-2015.)
 |-  ( B  e.  V  ->  ( A ( C  |`  D ) B  <->  ( A C B  /\  A  e.  D ) ) )
 
Theoremopres 4823 Ordered pair membership in a restriction when the first member belongs to the restricting class. (Contributed by NM, 30-Apr-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
 |-  B  e.  _V   =>    |-  ( A  e.  D  ->  ( <. A ,  B >.  e.  ( C  |`  D )  <->  <. A ,  B >.  e.  C ) )
 
Theoremresieq 4824 A restricted identity relation is equivalent to equality in its domain. (Contributed by NM, 30-Apr-2004.)
 |-  ( ( B  e.  A  /\  C  e.  A )  ->  ( B (  _I  |`  A ) C 
 <->  B  =  C ) )
 
Theoremopelresi 4825  <. A ,  A >. belongs to a restriction of the identity class iff  A belongs to the restricting class. (Contributed by FL, 27-Oct-2008.) (Revised by NM, 30-Mar-2016.)
 |-  ( A  e.  V  ->  ( <. A ,  A >.  e.  (  _I  |`  B )  <->  A  e.  B )
 )
 
Theoremresres 4826 The restriction of a restriction. (Contributed by NM, 27-Mar-2008.)
 |-  ( ( A  |`  B )  |`  C )  =  ( A  |`  ( B  i^i  C ) )
 
Theoremresundi 4827 Distributive law for restriction over union. Theorem 31 of [Suppes] p. 65. (Contributed by NM, 30-Sep-2002.)
 |-  ( A  |`  ( B  u.  C ) )  =  ( ( A  |`  B )  u.  ( A  |`  C ) )
 
Theoremresundir 4828 Distributive law for restriction over union. (Contributed by NM, 23-Sep-2004.)
 |-  ( ( A  u.  B )  |`  C )  =  ( ( A  |`  C )  u.  ( B  |`  C ) )
 
Theoremresindi 4829 Class restriction distributes over intersection. (Contributed by FL, 6-Oct-2008.)
 |-  ( A  |`  ( B  i^i  C ) )  =  ( ( A  |`  B )  i^i  ( A  |`  C ) )
 
Theoremresindir 4830 Class restriction distributes over intersection. (Contributed by NM, 18-Dec-2008.)
 |-  ( ( A  i^i  B )  |`  C )  =  ( ( A  |`  C )  i^i  ( B  |`  C ) )
 
Theoreminres 4831 Move intersection into class restriction. (Contributed by NM, 18-Dec-2008.)
 |-  ( A  i^i  ( B  |`  C ) )  =  ( ( A  i^i  B )  |`  C )
 
Theoremresdifcom 4832 Commutative law for restriction and difference. (Contributed by AV, 7-Jun-2021.)
 |-  ( ( A  |`  B ) 
 \  C )  =  ( ( A  \  C )  |`  B )
 
Theoremresiun1 4833* Distribution of restriction over indexed union. (Contributed by Mario Carneiro, 29-May-2015.)
 |-  ( U_ x  e.  A  B  |`  C )  =  U_ x  e.  A  ( B  |`  C )
 
Theoremresiun2 4834* Distribution of restriction over indexed union. (Contributed by Mario Carneiro, 29-May-2015.)
 |-  ( C  |`  U_ x  e.  A  B )  = 
 U_ x  e.  A  ( C  |`  B )
 
Theoremdmres 4835 The domain of a restriction. Exercise 14 of [TakeutiZaring] p. 25. (Contributed by NM, 1-Aug-1994.)
 |- 
 dom  ( A  |`  B )  =  ( B  i^i  dom 
 A )
 
Theoremssdmres 4836 A domain restricted to a subclass equals the subclass. (Contributed by NM, 2-Mar-1997.)
 |-  ( A  C_  dom  B  <->  dom  ( B  |`  A )  =  A )
 
Theoremdmresexg 4837 The domain of a restriction to a set exists. (Contributed by NM, 7-Apr-1995.)
 |-  ( B  e.  V  ->  dom  ( A  |`  B )  e.  _V )
 
Theoremresss 4838 A class includes its restriction. Exercise 15 of [TakeutiZaring] p. 25. (Contributed by NM, 2-Aug-1994.)
 |-  ( A  |`  B ) 
 C_  A
 
Theoremrescom 4839 Commutative law for restriction. (Contributed by NM, 27-Mar-1998.)
 |-  ( ( A  |`  B )  |`  C )  =  ( ( A  |`  C )  |`  B )
 
Theoremssres 4840 Subclass theorem for restriction. (Contributed by NM, 16-Aug-1994.)
 |-  ( A  C_  B  ->  ( A  |`  C ) 
 C_  ( B  |`  C ) )
 
Theoremssres2 4841 Subclass theorem for restriction. (Contributed by NM, 22-Mar-1998.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
 |-  ( A  C_  B  ->  ( C  |`  A ) 
 C_  ( C  |`  B ) )
 
Theoremrelres 4842 A restriction is a relation. Exercise 12 of [TakeutiZaring] p. 25. (Contributed by NM, 2-Aug-1994.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
 |- 
 Rel  ( A  |`  B )
 
Theoremresabs1 4843 Absorption law for restriction. Exercise 17 of [TakeutiZaring] p. 25. (Contributed by NM, 9-Aug-1994.)
 |-  ( B  C_  C  ->  ( ( A  |`  C )  |`  B )  =  ( A  |`  B )
 )
 
Theoremresabs1d 4844 Absorption law for restriction, deduction form. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
 |-  ( ph  ->  B  C_  C )   =>    |-  ( ph  ->  (
 ( A  |`  C )  |`  B )  =  ( A  |`  B )
 )
 
Theoremresabs2 4845 Absorption law for restriction. (Contributed by NM, 27-Mar-1998.)
 |-  ( B  C_  C  ->  ( ( A  |`  B )  |`  C )  =  ( A  |`  B )
 )
 
Theoremresidm 4846 Idempotent law for restriction. (Contributed by NM, 27-Mar-1998.)
 |-  ( ( A  |`  B )  |`  B )  =  ( A  |`  B )
 
Theoremresima 4847 A restriction to an image. (Contributed by NM, 29-Sep-2004.)
 |-  ( ( A  |`  B )
 " B )  =  ( A " B )
 
Theoremresima2 4848 Image under a restricted class. (Contributed by FL, 31-Aug-2009.)
 |-  ( B  C_  C  ->  ( ( A  |`  C )
 " B )  =  ( A " B ) )
 
Theoremxpssres 4849 Restriction of a constant function (or other cross product). (Contributed by Stefan O'Rear, 24-Jan-2015.)
 |-  ( C  C_  A  ->  ( ( A  X.  B )  |`  C )  =  ( C  X.  B ) )
 
Theoremelres 4850* Membership in a restriction. (Contributed by Scott Fenton, 17-Mar-2011.)
 |-  ( A  e.  ( B  |`  C )  <->  E. x  e.  C  E. y ( A  =  <. x ,  y >.  /\ 
 <. x ,  y >.  e.  B ) )
 
Theoremelsnres 4851* Memebership in restriction to a singleton. (Contributed by Scott Fenton, 17-Mar-2011.)
 |-  C  e.  _V   =>    |-  ( A  e.  ( B  |`  { C } )  <->  E. y ( A  =  <. C ,  y >.  /\  <. C ,  y >.  e.  B ) )
 
Theoremrelssres 4852 Simplification law for restriction. (Contributed by NM, 16-Aug-1994.)
 |-  ( ( Rel  A  /\  dom  A  C_  B )  ->  ( A  |`  B )  =  A )
 
Theoremresdm 4853 A relation restricted to its domain equals itself. (Contributed by NM, 12-Dec-2006.)
 |-  ( Rel  A  ->  ( A  |`  dom  A )  =  A )
 
Theoremresexg 4854 The restriction of a set is a set. (Contributed by NM, 28-Mar-1998.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
 |-  ( A  e.  V  ->  ( A  |`  B )  e.  _V )
 
Theoremresex 4855 The restriction of a set is a set. (Contributed by Jeff Madsen, 19-Jun-2011.)
 |-  A  e.  _V   =>    |-  ( A  |`  B )  e.  _V
 
Theoremresindm 4856 When restricting a relation, intersecting with the domain of the relation has no effect. (Contributed by FL, 6-Oct-2008.)
 |-  ( Rel  A  ->  ( A  |`  ( B  i^i  dom  A ) )  =  ( A  |`  B ) )
 
Theoremresdmdfsn 4857 Restricting a relation to its domain without a set is the same as restricting the relation to the universe without this set. (Contributed by AV, 2-Dec-2018.)
 |-  ( Rel  R  ->  ( R  |`  ( _V  \  { X } )
 )  =  ( R  |`  ( dom  R  \  { X } ) ) )
 
Theoremresopab 4858* Restriction of a class abstraction of ordered pairs. (Contributed by NM, 5-Nov-2002.)
 |-  ( { <. x ,  y >.  |  ph }  |`  A )  =  { <. x ,  y >.  |  ( x  e.  A  /\  ph ) }
 
Theoremresiexg 4859 The existence of a restricted identity function, proved without using the Axiom of Replacement. (Contributed by NM, 13-Jan-2007.)
 |-  ( A  e.  V  ->  (  _I  |`  A )  e.  _V )
 
Theoremiss 4860 A subclass of the identity function is the identity function restricted to its domain. (Contributed by NM, 13-Dec-2003.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
 |-  ( A  C_  _I  <->  A  =  (  _I  |`  dom  A )
 )
 
Theoremresopab2 4861* Restriction of a class abstraction of ordered pairs. (Contributed by NM, 24-Aug-2007.)
 |-  ( A  C_  B  ->  ( { <. x ,  y >.  |  ( x  e.  B  /\  ph ) }  |`  A )  =  { <. x ,  y >.  |  ( x  e.  A  /\  ph ) } )
 
Theoremresmpt 4862* Restriction of the mapping operation. (Contributed by Mario Carneiro, 15-Jul-2013.)
 |-  ( B  C_  A  ->  ( ( x  e.  A  |->  C )  |`  B )  =  ( x  e.  B  |->  C ) )
 
Theoremresmpt3 4863* Unconditional restriction of the mapping operation. (Contributed by Stefan O'Rear, 24-Jan-2015.) (Proof shortened by Mario Carneiro, 22-Mar-2015.)
 |-  ( ( x  e.  A  |->  C )  |`  B )  =  ( x  e.  ( A  i^i  B )  |->  C )
 
Theoremresmptf 4864 Restriction of the mapping operation. (Contributed by Thierry Arnoux, 28-Mar-2017.)
 |-  F/_ x A   &    |-  F/_ x B   =>    |-  ( B  C_  A  ->  ( ( x  e.  A  |->  C )  |`  B )  =  ( x  e.  B  |->  C ) )
 
Theoremresmptd 4865* Restriction of the mapping operation, deduction form. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
 |-  ( ph  ->  B  C_  A )   =>    |-  ( ph  ->  (
 ( x  e.  A  |->  C )  |`  B )  =  ( x  e.  B  |->  C ) )
 
Theoremdfres2 4866* Alternate definition of the restriction operation. (Contributed by Mario Carneiro, 5-Nov-2013.)
 |-  ( R  |`  A )  =  { <. x ,  y >.  |  ( x  e.  A  /\  x R y ) }
 
Theoremopabresid 4867* The restricted identity expressed with the class builder. (Contributed by FL, 25-Apr-2012.)
 |- 
 { <. x ,  y >.  |  ( x  e.  A  /\  y  =  x ) }  =  (  _I  |`  A )
 
Theoremmptresid 4868* The restricted identity expressed with the maps-to notation. (Contributed by FL, 25-Apr-2012.)
 |-  ( x  e.  A  |->  x )  =  (  _I  |`  A )
 
Theoremdmresi 4869 The domain of a restricted identity function. (Contributed by NM, 27-Aug-2004.)
 |- 
 dom  (  _I  |`  A )  =  A
 
Theoremresid 4870 Any relation restricted to the universe is itself. (Contributed by NM, 16-Mar-2004.)
 |-  ( Rel  A  ->  ( A  |`  _V )  =  A )
 
Theoremimaeq1 4871 Equality theorem for image. (Contributed by NM, 14-Aug-1994.)
 |-  ( A  =  B  ->  ( A " C )  =  ( B " C ) )
 
Theoremimaeq2 4872 Equality theorem for image. (Contributed by NM, 14-Aug-1994.)
 |-  ( A  =  B  ->  ( C " A )  =  ( C " B ) )
 
Theoremimaeq1i 4873 Equality theorem for image. (Contributed by NM, 21-Dec-2008.)
 |-  A  =  B   =>    |-  ( A " C )  =  ( B " C )
 
Theoremimaeq2i 4874 Equality theorem for image. (Contributed by NM, 21-Dec-2008.)
 |-  A  =  B   =>    |-  ( C " A )  =  ( C " B )
 
Theoremimaeq1d 4875 Equality theorem for image. (Contributed by FL, 15-Dec-2006.)
 |-  ( ph  ->  A  =  B )   =>    |-  ( ph  ->  ( A " C )  =  ( B " C ) )
 
Theoremimaeq2d 4876 Equality theorem for image. (Contributed by FL, 15-Dec-2006.)
 |-  ( ph  ->  A  =  B )   =>    |-  ( ph  ->  ( C " A )  =  ( C " B ) )
 
Theoremimaeq12d 4877 Equality theorem for image. (Contributed by Mario Carneiro, 4-Dec-2016.)
 |-  ( ph  ->  A  =  B )   &    |-  ( ph  ->  C  =  D )   =>    |-  ( ph  ->  ( A " C )  =  ( B " D ) )
 
Theoremdfima2 4878* Alternate definition of image. Compare definition (d) of [Enderton] p. 44. (Contributed by NM, 19-Apr-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
 |-  ( A " B )  =  { y  |  E. x  e.  B  x A y }
 
Theoremdfima3 4879* Alternate definition of image. Compare definition (d) of [Enderton] p. 44. (Contributed by NM, 14-Aug-1994.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
 |-  ( A " B )  =  { y  |  E. x ( x  e.  B  /\  <. x ,  y >.  e.  A ) }
 
Theoremelimag 4880* Membership in an image. Theorem 34 of [Suppes] p. 65. (Contributed by NM, 20-Jan-2007.)
 |-  ( A  e.  V  ->  ( A  e.  ( B " C )  <->  E. x  e.  C  x B A ) )
 
Theoremelima 4881* Membership in an image. Theorem 34 of [Suppes] p. 65. (Contributed by NM, 19-Apr-2004.)
 |-  A  e.  _V   =>    |-  ( A  e.  ( B " C )  <->  E. x  e.  C  x B A )
 
Theoremelima2 4882* Membership in an image. Theorem 34 of [Suppes] p. 65. (Contributed by NM, 11-Aug-2004.)
 |-  A  e.  _V   =>    |-  ( A  e.  ( B " C )  <->  E. x ( x  e.  C  /\  x B A ) )
 
Theoremelima3 4883* Membership in an image. Theorem 34 of [Suppes] p. 65. (Contributed by NM, 14-Aug-1994.)
 |-  A  e.  _V   =>    |-  ( A  e.  ( B " C )  <->  E. x ( x  e.  C  /\  <. x ,  A >.  e.  B ) )
 
Theoremnfima 4884 Bound-variable hypothesis builder for image. (Contributed by NM, 30-Dec-1996.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
 |-  F/_ x A   &    |-  F/_ x B   =>    |-  F/_ x ( A
 " B )
 
Theoremnfimad 4885 Deduction version of bound-variable hypothesis builder nfima 4884. (Contributed by FL, 15-Dec-2006.) (Revised by Mario Carneiro, 15-Oct-2016.)
 |-  ( ph  ->  F/_ x A )   &    |-  ( ph  ->  F/_ x B )   =>    |-  ( ph  ->  F/_ x ( A " B ) )
 
Theoremimadmrn 4886 The image of the domain of a class is the range of the class. (Contributed by NM, 14-Aug-1994.)
 |-  ( A " dom  A )  =  ran  A
 
Theoremimassrn 4887 The image of a class is a subset of its range. Theorem 3.16(xi) of [Monk1] p. 39. (Contributed by NM, 31-Mar-1995.)
 |-  ( A " B )  C_  ran  A
 
Theoremimaexg 4888 The image of a set is a set. Theorem 3.17 of [Monk1] p. 39. (Contributed by NM, 24-Jul-1995.)
 |-  ( A  e.  V  ->  ( A " B )  e.  _V )
 
Theoremimaex 4889 The image of a set is a set. Theorem 3.17 of [Monk1] p. 39. (Contributed by JJ, 24-Sep-2021.)
 |-  A  e.  _V   =>    |-  ( A " B )  e.  _V
 
Theoremimai 4890 Image under the identity relation. Theorem 3.16(viii) of [Monk1] p. 38. (Contributed by NM, 30-Apr-1998.)
 |-  (  _I  " A )  =  A
 
Theoremrnresi 4891 The range of the restricted identity function. (Contributed by NM, 27-Aug-2004.)
 |- 
 ran  (  _I  |`  A )  =  A
 
Theoremresiima 4892 The image of a restriction of the identity function. (Contributed by FL, 31-Dec-2006.)
 |-  ( B  C_  A  ->  ( (  _I  |`  A )
 " B )  =  B )
 
Theoremima0 4893 Image of the empty set. Theorem 3.16(ii) of [Monk1] p. 38. (Contributed by NM, 20-May-1998.)
 |-  ( A " (/) )  =  (/)
 
Theorem0ima 4894 Image under the empty relation. (Contributed by FL, 11-Jan-2007.)
 |-  ( (/) " A )  =  (/)
 
Theoremcsbima12g 4895 Move class substitution in and out of the image of a function. (Contributed by FL, 15-Dec-2006.) (Proof shortened by Mario Carneiro, 4-Dec-2016.)
 |-  ( A  e.  C  -> 
 [_ A  /  x ]_ ( F " B )  =  ( [_ A  /  x ]_ F "
 [_ A  /  x ]_ B ) )
 
Theoremimadisj 4896 A class whose image under another is empty is disjoint with the other's domain. (Contributed by FL, 24-Jan-2007.)
 |-  ( ( A " B )  =  (/)  <->  ( dom  A  i^i  B )  =  (/) )
 
Theoremcnvimass 4897 A preimage under any class is included in the domain of the class. (Contributed by FL, 29-Jan-2007.)
 |-  ( `' A " B )  C_  dom  A
 
Theoremcnvimarndm 4898 The preimage of the range of a class is the domain of the class. (Contributed by Jeff Hankins, 15-Jul-2009.)
 |-  ( `' A " ran  A )  =  dom  A
 
Theoremimasng 4899* The image of a singleton. (Contributed by NM, 8-May-2005.)
 |-  ( A  e.  B  ->  ( R " { A } )  =  {
 y  |  A R y } )
 
Theoremelreimasng 4900 Elementhood in the image of a singleton. (Contributed by Jim Kingdon, 10-Dec-2018.)
 |-  ( ( Rel  R  /\  A  e.  V ) 
 ->  ( B  e.  ( R " { A }
 ) 
 <->  A R B ) )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13239
  Copyright terms: Public domain < Previous  Next >