HomeHome Intuitionistic Logic Explorer
Theorem List (p. 49 of 162)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 4801-4900   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremunixpss 4801 The double class union of a cross product is included in the union of its arguments. (Contributed by NM, 16-Sep-2006.)
 |- 
 U. U. ( A  X.  B )  C_  ( A  u.  B )
 
Theoremxpexg 4802 The cross product of two sets is a set. Proposition 6.2 of [TakeutiZaring] p. 23. (Contributed by NM, 14-Aug-1994.)
 |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A  X.  B )  e.  _V )
 
Theoremxpex 4803 The cross product of two sets is a set. Proposition 6.2 of [TakeutiZaring] p. 23. (Contributed by NM, 14-Aug-1994.)
 |-  A  e.  _V   &    |-  B  e.  _V   =>    |-  ( A  X.  B )  e.  _V
 
Theoremsqxpexg 4804 The Cartesian square of a set is a set. (Contributed by AV, 13-Jan-2020.)
 |-  ( A  e.  V  ->  ( A  X.  A )  e.  _V )
 
Theoremrelun 4805 The union of two relations is a relation. Compare Exercise 5 of [TakeutiZaring] p. 25. (Contributed by NM, 12-Aug-1994.)
 |-  ( Rel  ( A  u.  B )  <->  ( Rel  A  /\  Rel  B ) )
 
Theoremrelin1 4806 The intersection with a relation is a relation. (Contributed by NM, 16-Aug-1994.)
 |-  ( Rel  A  ->  Rel  ( A  i^i  B ) )
 
Theoremrelin2 4807 The intersection with a relation is a relation. (Contributed by NM, 17-Jan-2006.)
 |-  ( Rel  B  ->  Rel  ( A  i^i  B ) )
 
Theoremreldif 4808 A difference cutting down a relation is a relation. (Contributed by NM, 31-Mar-1998.)
 |-  ( Rel  A  ->  Rel  ( A  \  B ) )
 
Theoremreliun 4809 An indexed union is a relation iff each member of its indexed family is a relation. (Contributed by NM, 19-Dec-2008.)
 |-  ( Rel  U_ x  e.  A  B  <->  A. x  e.  A  Rel  B )
 
Theoremreliin 4810 An indexed intersection is a relation if at least one of the member of the indexed family is a relation. (Contributed by NM, 8-Mar-2014.)
 |-  ( E. x  e.  A  Rel  B  ->  Rel  |^|_ x  e.  A  B )
 
Theoremreluni 4811* The union of a class is a relation iff any member is a relation. Exercise 6 of [TakeutiZaring] p. 25 and its converse. (Contributed by NM, 13-Aug-2004.)
 |-  ( Rel  U. A  <->  A. x  e.  A  Rel  x )
 
Theoremrelint 4812* The intersection of a class is a relation if at least one member is a relation. (Contributed by NM, 8-Mar-2014.)
 |-  ( E. x  e.  A  Rel  x  ->  Rel  |^| A )
 
Theoremrel0 4813 The empty set is a relation. (Contributed by NM, 26-Apr-1998.)
 |- 
 Rel  (/)
 
Theoremrelopabiv 4814* A class of ordered pairs is a relation. For a version without a disjoint variable condition, see relopabi 4816. (Contributed by BJ, 22-Jul-2023.)
 |-  A  =  { <. x ,  y >.  |  ph }   =>    |-  Rel 
 A
 
Theoremrelopabv 4815* A class of ordered pairs is a relation. For a version without a disjoint variable condition, see relopab 4817. (Contributed by SN, 8-Sep-2024.)
 |- 
 Rel  { <. x ,  y >.  |  ph }
 
Theoremrelopabi 4816 A class of ordered pairs is a relation. (Contributed by Mario Carneiro, 21-Dec-2013.)
 |-  A  =  { <. x ,  y >.  |  ph }   =>    |-  Rel 
 A
 
Theoremrelopab 4817 A class of ordered pairs is a relation. (Contributed by NM, 8-Mar-1995.) (Unnecessary distinct variable restrictions were removed by Alan Sare, 9-Jul-2013.) (Proof shortened by Mario Carneiro, 21-Dec-2013.)
 |- 
 Rel  { <. x ,  y >.  |  ph }
 
Theorembrabv 4818 If two classes are in a relationship given by an ordered-pair class abstraction, the classes are sets. (Contributed by Alexander van der Vekens, 5-Nov-2017.)
 |-  ( X { <. x ,  y >.  |  ph } Y  ->  ( X  e.  _V  /\  Y  e.  _V ) )
 
Theoremmptrel 4819 The maps-to notation always describes a relationship. (Contributed by Scott Fenton, 16-Apr-2012.)
 |- 
 Rel  ( x  e.  A  |->  B )
 
Theoremreli 4820 The identity relation is a relation. Part of Exercise 4.12(p) of [Mendelson] p. 235. (Contributed by NM, 26-Apr-1998.) (Revised by Mario Carneiro, 21-Dec-2013.)
 |- 
 Rel  _I
 
Theoremrele 4821 The membership relation is a relation. (Contributed by NM, 26-Apr-1998.) (Revised by Mario Carneiro, 21-Dec-2013.)
 |- 
 Rel  _E
 
Theoremopabid2 4822* A relation expressed as an ordered pair abstraction. (Contributed by NM, 11-Dec-2006.)
 |-  ( Rel  A  ->  {
 <. x ,  y >.  | 
 <. x ,  y >.  e.  A }  =  A )
 
Theoreminopab 4823* Intersection of two ordered pair class abstractions. (Contributed by NM, 30-Sep-2002.)
 |-  ( { <. x ,  y >.  |  ph }  i^i  {
 <. x ,  y >.  |  ps } )  =  { <. x ,  y >.  |  ( ph  /\  ps ) }
 
Theoremdifopab 4824* The difference of two ordered-pair abstractions. (Contributed by Stefan O'Rear, 17-Jan-2015.)
 |-  ( { <. x ,  y >.  |  ph }  \  { <. x ,  y >.  |  ps } )  =  { <. x ,  y >.  |  ( ph  /\  -.  ps ) }
 
Theoreminxp 4825 The intersection of two cross products. Exercise 9 of [TakeutiZaring] p. 25. (Contributed by NM, 3-Aug-1994.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
 |-  ( ( A  X.  B )  i^i  ( C  X.  D ) )  =  ( ( A  i^i  C )  X.  ( B  i^i  D ) )
 
Theoremxpindi 4826 Distributive law for cross product over intersection. Theorem 102 of [Suppes] p. 52. (Contributed by NM, 26-Sep-2004.)
 |-  ( A  X.  ( B  i^i  C ) )  =  ( ( A  X.  B )  i^i  ( A  X.  C ) )
 
Theoremxpindir 4827 Distributive law for cross product over intersection. Similar to Theorem 102 of [Suppes] p. 52. (Contributed by NM, 26-Sep-2004.)
 |-  ( ( A  i^i  B )  X.  C )  =  ( ( A  X.  C )  i^i  ( B  X.  C ) )
 
Theoremxpiindim 4828* Distributive law for cross product over indexed intersection. (Contributed by Jim Kingdon, 7-Dec-2018.)
 |-  ( E. y  y  e.  A  ->  ( C  X.  |^|_ x  e.  A  B )  =  |^|_ x  e.  A  ( C  X.  B ) )
 
Theoremxpriindim 4829* Distributive law for cross product over relativized indexed intersection. (Contributed by Jim Kingdon, 7-Dec-2018.)
 |-  ( E. y  y  e.  A  ->  ( C  X.  ( D  i^i  |^|_
 x  e.  A  B ) )  =  (
 ( C  X.  D )  i^i  |^|_ x  e.  A  ( C  X.  B ) ) )
 
Theoremeliunxp 4830* Membership in a union of cross products. Analogue of elxp 4705 for nonconstant  B ( x ). (Contributed by Mario Carneiro, 29-Dec-2014.)
 |-  ( C  e.  U_ x  e.  A  ( { x }  X.  B ) 
 <-> 
 E. x E. y
 ( C  =  <. x ,  y >.  /\  ( x  e.  A  /\  y  e.  B )
 ) )
 
Theoremopeliunxp2 4831* Membership in a union of cross products. (Contributed by Mario Carneiro, 14-Feb-2015.)
 |-  ( x  =  C  ->  B  =  E )   =>    |-  ( <. C ,  D >.  e.  U_ x  e.  A  ( { x }  X.  B )  <->  ( C  e.  A  /\  D  e.  E ) )
 
Theoremraliunxp 4832* Write a double restricted quantification as one universal quantifier. In this version of ralxp 4834, 
B ( y ) is not assumed to be constant. (Contributed by Mario Carneiro, 29-Dec-2014.)
 |-  ( x  =  <. y ,  z >.  ->  ( ph 
 <->  ps ) )   =>    |-  ( A. x  e.  U_  y  e.  A  ( { y }  X.  B ) ph  <->  A. y  e.  A  A. z  e.  B  ps )
 
Theoremrexiunxp 4833* Write a double restricted quantification as one universal quantifier. In this version of rexxp 4835, 
B ( y ) is not assumed to be constant. (Contributed by Mario Carneiro, 14-Feb-2015.)
 |-  ( x  =  <. y ,  z >.  ->  ( ph 
 <->  ps ) )   =>    |-  ( E. x  e.  U_  y  e.  A  ( { y }  X.  B ) ph  <->  E. y  e.  A  E. z  e.  B  ps )
 
Theoremralxp 4834* Universal quantification restricted to a cross product is equivalent to a double restricted quantification. The hypothesis specifies an implicit substitution. (Contributed by NM, 7-Feb-2004.) (Revised by Mario Carneiro, 29-Dec-2014.)
 |-  ( x  =  <. y ,  z >.  ->  ( ph 
 <->  ps ) )   =>    |-  ( A. x  e.  ( A  X.  B ) ph  <->  A. y  e.  A  A. z  e.  B  ps )
 
Theoremrexxp 4835* Existential quantification restricted to a cross product is equivalent to a double restricted quantification. (Contributed by NM, 11-Nov-1995.) (Revised by Mario Carneiro, 14-Feb-2015.)
 |-  ( x  =  <. y ,  z >.  ->  ( ph 
 <->  ps ) )   =>    |-  ( E. x  e.  ( A  X.  B ) ph  <->  E. y  e.  A  E. z  e.  B  ps )
 
Theoremdjussxp 4836* Disjoint union is a subset of a cross product. (Contributed by Stefan O'Rear, 21-Nov-2014.)
 |-  U_ x  e.  A  ( { x }  X.  B )  C_  ( A  X.  _V )
 
Theoremralxpf 4837* Version of ralxp 4834 with bound-variable hypotheses. (Contributed by NM, 18-Aug-2006.) (Revised by Mario Carneiro, 15-Oct-2016.)
 |- 
 F/ y ph   &    |-  F/ z ph   &    |-  F/ x ps   &    |-  ( x  = 
 <. y ,  z >.  ->  ( ph  <->  ps ) )   =>    |-  ( A. x  e.  ( A  X.  B ) ph  <->  A. y  e.  A  A. z  e.  B  ps )
 
Theoremrexxpf 4838* Version of rexxp 4835 with bound-variable hypotheses. (Contributed by NM, 19-Dec-2008.) (Revised by Mario Carneiro, 15-Oct-2016.)
 |- 
 F/ y ph   &    |-  F/ z ph   &    |-  F/ x ps   &    |-  ( x  = 
 <. y ,  z >.  ->  ( ph  <->  ps ) )   =>    |-  ( E. x  e.  ( A  X.  B ) ph  <->  E. y  e.  A  E. z  e.  B  ps )
 
Theoremiunxpf 4839* Indexed union on a cross product is equals a double indexed union. The hypothesis specifies an implicit substitution. (Contributed by NM, 19-Dec-2008.)
 |-  F/_ y C   &    |-  F/_ z C   &    |-  F/_ x D   &    |-  ( x  =  <. y ,  z >.  ->  C  =  D )   =>    |-  U_ x  e.  ( A  X.  B ) C  =  U_ y  e.  A  U_ z  e.  B  D
 
Theoremopabbi2dv 4840* Deduce equality of a relation and an ordered-pair class builder. Compare abbi2dv 2325. (Contributed by NM, 24-Feb-2014.)
 |- 
 Rel  A   &    |-  ( ph  ->  (
 <. x ,  y >.  e.  A  <->  ps ) )   =>    |-  ( ph  ->  A  =  { <. x ,  y >.  |  ps }
 )
 
Theoremrelop 4841* A necessary and sufficient condition for a Kuratowski ordered pair to be a relation. (Contributed by NM, 3-Jun-2008.) (Avoid depending on this detail.)
 |-  A  e.  _V   &    |-  B  e.  _V   =>    |-  ( Rel  <. A ,  B >. 
 <-> 
 E. x E. y
 ( A  =  { x }  /\  B  =  { x ,  y }
 ) )
 
Theoremideqg 4842 For sets, the identity relation is the same as equality. (Contributed by NM, 30-Apr-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
 |-  ( B  e.  V  ->  ( A  _I  B  <->  A  =  B ) )
 
Theoremideq 4843 For sets, the identity relation is the same as equality. (Contributed by NM, 13-Aug-1995.)
 |-  B  e.  _V   =>    |-  ( A  _I  B 
 <->  A  =  B )
 
Theoremididg 4844 A set is identical to itself. (Contributed by NM, 28-May-2008.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
 |-  ( A  e.  V  ->  A  _I  A )
 
Theoremissetid 4845 Two ways of expressing set existence. (Contributed by NM, 16-Feb-2008.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) (Revised by Mario Carneiro, 26-Apr-2015.)
 |-  ( A  e.  _V  <->  A  _I  A )
 
Theoremcoss1 4846 Subclass theorem for composition. (Contributed by FL, 30-Dec-2010.)
 |-  ( A  C_  B  ->  ( A  o.  C )  C_  ( B  o.  C ) )
 
Theoremcoss2 4847 Subclass theorem for composition. (Contributed by NM, 5-Apr-2013.)
 |-  ( A  C_  B  ->  ( C  o.  A )  C_  ( C  o.  B ) )
 
Theoremcoeq1 4848 Equality theorem for composition of two classes. (Contributed by NM, 3-Jan-1997.)
 |-  ( A  =  B  ->  ( A  o.  C )  =  ( B  o.  C ) )
 
Theoremcoeq2 4849 Equality theorem for composition of two classes. (Contributed by NM, 3-Jan-1997.)
 |-  ( A  =  B  ->  ( C  o.  A )  =  ( C  o.  B ) )
 
Theoremcoeq1i 4850 Equality inference for composition of two classes. (Contributed by NM, 16-Nov-2000.)
 |-  A  =  B   =>    |-  ( A  o.  C )  =  ( B  o.  C )
 
Theoremcoeq2i 4851 Equality inference for composition of two classes. (Contributed by NM, 16-Nov-2000.)
 |-  A  =  B   =>    |-  ( C  o.  A )  =  ( C  o.  B )
 
Theoremcoeq1d 4852 Equality deduction for composition of two classes. (Contributed by NM, 16-Nov-2000.)
 |-  ( ph  ->  A  =  B )   =>    |-  ( ph  ->  ( A  o.  C )  =  ( B  o.  C ) )
 
Theoremcoeq2d 4853 Equality deduction for composition of two classes. (Contributed by NM, 16-Nov-2000.)
 |-  ( ph  ->  A  =  B )   =>    |-  ( ph  ->  ( C  o.  A )  =  ( C  o.  B ) )
 
Theoremcoeq12i 4854 Equality inference for composition of two classes. (Contributed by FL, 7-Jun-2012.)
 |-  A  =  B   &    |-  C  =  D   =>    |-  ( A  o.  C )  =  ( B  o.  D )
 
Theoremcoeq12d 4855 Equality deduction for composition of two classes. (Contributed by FL, 7-Jun-2012.)
 |-  ( ph  ->  A  =  B )   &    |-  ( ph  ->  C  =  D )   =>    |-  ( ph  ->  ( A  o.  C )  =  ( B  o.  D ) )
 
Theoremnfco 4856 Bound-variable hypothesis builder for function value. (Contributed by NM, 1-Sep-1999.)
 |-  F/_ x A   &    |-  F/_ x B   =>    |-  F/_ x ( A  o.  B )
 
Theoremelco 4857* Elements of a composed relation. (Contributed by BJ, 10-Jul-2022.)
 |-  ( A  e.  ( R  o.  S )  <->  E. x E. y E. z ( A  =  <. x ,  z >.  /\  ( x S y 
 /\  y R z ) ) )
 
Theorembrcog 4858* Ordered pair membership in a composition. (Contributed by NM, 24-Feb-2015.)
 |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A ( C  o.  D ) B  <->  E. x ( A D x  /\  x C B ) ) )
 
Theoremopelco2g 4859* Ordered pair membership in a composition. (Contributed by NM, 27-Jan-1997.) (Revised by Mario Carneiro, 24-Feb-2015.)
 |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( <. A ,  B >.  e.  ( C  o.  D )  <->  E. x ( <. A ,  x >.  e.  D  /\  <. x ,  B >.  e.  C ) ) )
 
Theorembrcogw 4860 Ordered pair membership in a composition. (Contributed by Thierry Arnoux, 14-Jan-2018.)
 |-  ( ( ( A  e.  V  /\  B  e.  W  /\  X  e.  Z )  /\  ( A D X  /\  X C B ) )  ->  A ( C  o.  D ) B )
 
Theoremeqbrrdva 4861* Deduction from extensionality principle for relations, given an equivalence only on the relation's domain and range. (Contributed by Thierry Arnoux, 28-Nov-2017.)
 |-  ( ph  ->  A  C_  ( C  X.  D ) )   &    |-  ( ph  ->  B 
 C_  ( C  X.  D ) )   &    |-  (
 ( ph  /\  x  e.  C  /\  y  e.  D )  ->  ( x A y  <->  x B y ) )   =>    |-  ( ph  ->  A  =  B )
 
Theorembrco 4862* Binary relation on a composition. (Contributed by NM, 21-Sep-2004.) (Revised by Mario Carneiro, 24-Feb-2015.)
 |-  A  e.  _V   &    |-  B  e.  _V   =>    |-  ( A ( C  o.  D ) B  <->  E. x ( A D x  /\  x C B ) )
 
Theoremopelco 4863* Ordered pair membership in a composition. (Contributed by NM, 27-Dec-1996.) (Revised by Mario Carneiro, 24-Feb-2015.)
 |-  A  e.  _V   &    |-  B  e.  _V   =>    |-  ( <. A ,  B >.  e.  ( C  o.  D )  <->  E. x ( A D x  /\  x C B ) )
 
Theoremcnvss 4864 Subset theorem for converse. (Contributed by NM, 22-Mar-1998.)
 |-  ( A  C_  B  ->  `' A  C_  `' B )
 
Theoremcnveq 4865 Equality theorem for converse. (Contributed by NM, 13-Aug-1995.)
 |-  ( A  =  B  ->  `' A  =  `' B )
 
Theoremcnveqi 4866 Equality inference for converse. (Contributed by NM, 23-Dec-2008.)
 |-  A  =  B   =>    |-  `' A  =  `' B
 
Theoremcnveqd 4867 Equality deduction for converse. (Contributed by NM, 6-Dec-2013.)
 |-  ( ph  ->  A  =  B )   =>    |-  ( ph  ->  `' A  =  `' B )
 
Theoremelcnv 4868* Membership in a converse. Equation 5 of [Suppes] p. 62. (Contributed by NM, 24-Mar-1998.)
 |-  ( A  e.  `' R 
 <-> 
 E. x E. y
 ( A  =  <. x ,  y >.  /\  y R x ) )
 
Theoremelcnv2 4869* Membership in a converse. Equation 5 of [Suppes] p. 62. (Contributed by NM, 11-Aug-2004.)
 |-  ( A  e.  `' R 
 <-> 
 E. x E. y
 ( A  =  <. x ,  y >.  /\  <. y ,  x >.  e.  R ) )
 
Theoremnfcnv 4870 Bound-variable hypothesis builder for converse. (Contributed by NM, 31-Jan-2004.) (Revised by Mario Carneiro, 15-Oct-2016.)
 |-  F/_ x A   =>    |-  F/_ x `' A
 
Theoremopelcnvg 4871 Ordered-pair membership in converse. (Contributed by NM, 13-May-1999.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
 |-  ( ( A  e.  C  /\  B  e.  D )  ->  ( <. A ,  B >.  e.  `' R  <->  <. B ,  A >.  e.  R ) )
 
Theorembrcnvg 4872 The converse of a binary relation swaps arguments. Theorem 11 of [Suppes] p. 61. (Contributed by NM, 10-Oct-2005.)
 |-  ( ( A  e.  C  /\  B  e.  D )  ->  ( A `' R B  <->  B R A ) )
 
Theoremopelcnv 4873 Ordered-pair membership in converse. (Contributed by NM, 13-Aug-1995.)
 |-  A  e.  _V   &    |-  B  e.  _V   =>    |-  ( <. A ,  B >.  e.  `' R  <->  <. B ,  A >.  e.  R )
 
Theorembrcnv 4874 The converse of a binary relation swaps arguments. Theorem 11 of [Suppes] p. 61. (Contributed by NM, 13-Aug-1995.)
 |-  A  e.  _V   &    |-  B  e.  _V   =>    |-  ( A `' R B 
 <->  B R A )
 
Theoremcsbcnvg 4875 Move class substitution in and out of the converse of a function. (Contributed by Thierry Arnoux, 8-Feb-2017.)
 |-  ( A  e.  V  ->  `' [_ A  /  x ]_ F  =  [_ A  /  x ]_ `' F )
 
Theoremcnvco 4876 Distributive law of converse over class composition. Theorem 26 of [Suppes] p. 64. (Contributed by NM, 19-Mar-1998.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
 |-  `' ( A  o.  B )  =  ( `' B  o.  `' A )
 
Theoremcnvuni 4877* The converse of a class union is the (indexed) union of the converses of its members. (Contributed by NM, 11-Aug-2004.)
 |-  `' U. A  =  U_ x  e.  A  `' x
 
Theoremdfdm3 4878* Alternate definition of domain. Definition 6.5(1) of [TakeutiZaring] p. 24. (Contributed by NM, 28-Dec-1996.)
 |- 
 dom  A  =  { x  |  E. y <. x ,  y >.  e.  A }
 
Theoremdfrn2 4879* Alternate definition of range. Definition 4 of [Suppes] p. 60. (Contributed by NM, 27-Dec-1996.)
 |- 
 ran  A  =  {
 y  |  E. x  x A y }
 
Theoremdfrn3 4880* Alternate definition of range. Definition 6.5(2) of [TakeutiZaring] p. 24. (Contributed by NM, 28-Dec-1996.)
 |- 
 ran  A  =  {
 y  |  E. x <. x ,  y >.  e.  A }
 
Theoremelrn2g 4881* Membership in a range. (Contributed by Scott Fenton, 2-Feb-2011.)
 |-  ( A  e.  V  ->  ( A  e.  ran  B  <->  E. x <. x ,  A >.  e.  B ) )
 
Theoremelrng 4882* Membership in a range. (Contributed by Scott Fenton, 2-Feb-2011.)
 |-  ( A  e.  V  ->  ( A  e.  ran  B  <->  E. x  x B A ) )
 
Theoremssrelrn 4883* If a relation is a subset of a cartesian product, then for each element of the range of the relation there is an element of the first set of the cartesian product which is related to the element of the range by the relation. (Contributed by AV, 24-Oct-2020.)
 |-  ( ( R  C_  ( A  X.  B ) 
 /\  Y  e.  ran  R )  ->  E. a  e.  A  a R Y )
 
Theoremdfdm4 4884 Alternate definition of domain. (Contributed by NM, 28-Dec-1996.)
 |- 
 dom  A  =  ran  `' A
 
Theoremdfdmf 4885* Definition of domain, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 8-Mar-1995.) (Revised by Mario Carneiro, 15-Oct-2016.)
 |-  F/_ x A   &    |-  F/_ y A   =>    |-  dom  A  =  { x  |  E. y  x A y }
 
Theoremcsbdmg 4886 Distribute proper substitution through the domain of a class. (Contributed by Jim Kingdon, 8-Dec-2018.)
 |-  ( A  e.  V  -> 
 [_ A  /  x ]_
 dom  B  =  dom  [_ A  /  x ]_ B )
 
Theoremeldmg 4887* Domain membership. Theorem 4 of [Suppes] p. 59. (Contributed by Mario Carneiro, 9-Jul-2014.)
 |-  ( A  e.  V  ->  ( A  e.  dom  B  <->  E. y  A B y ) )
 
Theoremeldm2g 4888* Domain membership. Theorem 4 of [Suppes] p. 59. (Contributed by NM, 27-Jan-1997.) (Revised by Mario Carneiro, 9-Jul-2014.)
 |-  ( A  e.  V  ->  ( A  e.  dom  B  <->  E. y <. A ,  y >.  e.  B ) )
 
Theoremeldm 4889* Membership in a domain. Theorem 4 of [Suppes] p. 59. (Contributed by NM, 2-Apr-2004.)
 |-  A  e.  _V   =>    |-  ( A  e.  dom 
 B 
 <-> 
 E. y  A B y )
 
Theoremeldm2 4890* Membership in a domain. Theorem 4 of [Suppes] p. 59. (Contributed by NM, 1-Aug-1994.)
 |-  A  e.  _V   =>    |-  ( A  e.  dom 
 B 
 <-> 
 E. y <. A ,  y >.  e.  B )
 
Theoremdmss 4891 Subset theorem for domain. (Contributed by NM, 11-Aug-1994.)
 |-  ( A  C_  B  ->  dom  A  C_  dom  B )
 
Theoremdmeq 4892 Equality theorem for domain. (Contributed by NM, 11-Aug-1994.)
 |-  ( A  =  B  ->  dom  A  =  dom  B )
 
Theoremdmeqi 4893 Equality inference for domain. (Contributed by NM, 4-Mar-2004.)
 |-  A  =  B   =>    |-  dom  A  =  dom  B
 
Theoremdmeqd 4894 Equality deduction for domain. (Contributed by NM, 4-Mar-2004.)
 |-  ( ph  ->  A  =  B )   =>    |-  ( ph  ->  dom  A  =  dom  B )
 
Theoremopeldm 4895 Membership of first of an ordered pair in a domain. (Contributed by NM, 30-Jul-1995.)
 |-  A  e.  _V   &    |-  B  e.  _V   =>    |-  ( <. A ,  B >.  e.  C  ->  A  e.  dom  C )
 
Theorembreldm 4896 Membership of first of a binary relation in a domain. (Contributed by NM, 30-Jul-1995.)
 |-  A  e.  _V   &    |-  B  e.  _V   =>    |-  ( A R B  ->  A  e.  dom  R )
 
Theoremopeldmg 4897 Membership of first of an ordered pair in a domain. (Contributed by Jim Kingdon, 9-Jul-2019.)
 |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( <. A ,  B >.  e.  C  ->  A  e.  dom  C )
 )
 
Theorembreldmg 4898 Membership of first of a binary relation in a domain. (Contributed by NM, 21-Mar-2007.)
 |-  ( ( A  e.  C  /\  B  e.  D  /\  A R B ) 
 ->  A  e.  dom  R )
 
Theoremdmun 4899 The domain of a union is the union of domains. Exercise 56(a) of [Enderton] p. 65. (Contributed by NM, 12-Aug-1994.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
 |- 
 dom  ( A  u.  B )  =  ( dom  A  u.  dom  B )
 
Theoremdmin 4900 The domain of an intersection belong to the intersection of domains. Theorem 6 of [Suppes] p. 60. (Contributed by NM, 15-Sep-2004.)
 |- 
 dom  ( A  i^i  B )  C_  ( dom  A  i^i  dom  B )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16195
  Copyright terms: Public domain < Previous  Next >