ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lgsquadlem3 Unicode version

Theorem lgsquadlem3 15195
Description: Lemma for lgsquad 15196. (Contributed by Mario Carneiro, 18-Jun-2015.)
Hypotheses
Ref Expression
lgseisen.1  |-  ( ph  ->  P  e.  ( Prime  \  { 2 } ) )
lgseisen.2  |-  ( ph  ->  Q  e.  ( Prime  \  { 2 } ) )
lgseisen.3  |-  ( ph  ->  P  =/=  Q )
lgsquad.4  |-  M  =  ( ( P  - 
1 )  /  2
)
lgsquad.5  |-  N  =  ( ( Q  - 
1 )  /  2
)
lgsquad.6  |-  S  =  { <. x ,  y
>.  |  ( (
x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N ) )  /\  ( y  x.  P )  <  (
x  x.  Q ) ) }
Assertion
Ref Expression
lgsquadlem3  |-  ( ph  ->  ( ( P  /L Q )  x.  ( Q  /L
P ) )  =  ( -u 1 ^ ( M  x.  N
) ) )
Distinct variable groups:    x, y, P    ph, x, y    y, M   
x, N, y    x, Q, y    x, S    x, M    y, S

Proof of Theorem lgsquadlem3
Dummy variables  w  z  j are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lgseisen.2 . . . . 5  |-  ( ph  ->  Q  e.  ( Prime  \  { 2 } ) )
2 lgseisen.1 . . . . 5  |-  ( ph  ->  P  e.  ( Prime  \  { 2 } ) )
3 lgseisen.3 . . . . . 6  |-  ( ph  ->  P  =/=  Q )
43necomd 2450 . . . . 5  |-  ( ph  ->  Q  =/=  P )
5 lgsquad.5 . . . . 5  |-  N  =  ( ( Q  - 
1 )  /  2
)
6 lgsquad.4 . . . . 5  |-  M  =  ( ( P  - 
1 )  /  2
)
7 eleq1w 2254 . . . . . . . . . 10  |-  ( x  =  z  ->  (
x  e.  ( 1 ... M )  <->  z  e.  ( 1 ... M
) ) )
8 eleq1w 2254 . . . . . . . . . 10  |-  ( y  =  w  ->  (
y  e.  ( 1 ... N )  <->  w  e.  ( 1 ... N
) ) )
97, 8bi2anan9 606 . . . . . . . . 9  |-  ( ( x  =  z  /\  y  =  w )  ->  ( ( x  e.  ( 1 ... M
)  /\  y  e.  ( 1 ... N
) )  <->  ( z  e.  ( 1 ... M
)  /\  w  e.  ( 1 ... N
) ) ) )
109biancomd 271 . . . . . . . 8  |-  ( ( x  =  z  /\  y  =  w )  ->  ( ( x  e.  ( 1 ... M
)  /\  y  e.  ( 1 ... N
) )  <->  ( w  e.  ( 1 ... N
)  /\  z  e.  ( 1 ... M
) ) ) )
11 oveq1 5925 . . . . . . . . 9  |-  ( x  =  z  ->  (
x  x.  Q )  =  ( z  x.  Q ) )
12 oveq1 5925 . . . . . . . . 9  |-  ( y  =  w  ->  (
y  x.  P )  =  ( w  x.  P ) )
1311, 12breqan12d 4045 . . . . . . . 8  |-  ( ( x  =  z  /\  y  =  w )  ->  ( ( x  x.  Q )  <  (
y  x.  P )  <-> 
( z  x.  Q
)  <  ( w  x.  P ) ) )
1410, 13anbi12d 473 . . . . . . 7  |-  ( ( x  =  z  /\  y  =  w )  ->  ( ( ( x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N
) )  /\  (
x  x.  Q )  <  ( y  x.  P ) )  <->  ( (
w  e.  ( 1 ... N )  /\  z  e.  ( 1 ... M ) )  /\  ( z  x.  Q )  <  (
w  x.  P ) ) ) )
1514ancoms 268 . . . . . 6  |-  ( ( y  =  w  /\  x  =  z )  ->  ( ( ( x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N
) )  /\  (
x  x.  Q )  <  ( y  x.  P ) )  <->  ( (
w  e.  ( 1 ... N )  /\  z  e.  ( 1 ... M ) )  /\  ( z  x.  Q )  <  (
w  x.  P ) ) ) )
1615cbvopabv 4101 . . . . 5  |-  { <. y ,  x >.  |  ( ( x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N ) )  /\  ( x  x.  Q )  < 
( y  x.  P
) ) }  =  { <. w ,  z
>.  |  ( (
w  e.  ( 1 ... N )  /\  z  e.  ( 1 ... M ) )  /\  ( z  x.  Q )  <  (
w  x.  P ) ) }
171, 2, 4, 5, 6, 16lgsquadlem2 15194 . . . 4  |-  ( ph  ->  ( P  /L
Q )  =  (
-u 1 ^ ( `  { <. y ,  x >.  |  ( ( x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N
) )  /\  (
x  x.  Q )  <  ( y  x.  P ) ) } ) ) )
18 relopabv 4786 . . . . . . . 8  |-  Rel  { <. x ,  y >.  |  ( ( x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N
) )  /\  (
x  x.  Q )  <  ( y  x.  P ) ) }
19 eqid 2193 . . . . . . . . 9  |-  { <. x ,  y >.  |  ( ( x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N ) )  /\  ( x  x.  Q )  < 
( y  x.  P
) ) }  =  { <. x ,  y
>.  |  ( (
x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N ) )  /\  ( x  x.  Q )  <  (
y  x.  P ) ) }
20 1zzd 9344 . . . . . . . . . 10  |-  ( ph  ->  1  e.  ZZ )
212, 6gausslemma2dlem0b 15166 . . . . . . . . . . 11  |-  ( ph  ->  M  e.  NN )
2221nnzd 9438 . . . . . . . . . 10  |-  ( ph  ->  M  e.  ZZ )
2320, 22fzfigd 10502 . . . . . . . . 9  |-  ( ph  ->  ( 1 ... M
)  e.  Fin )
241, 5gausslemma2dlem0b 15166 . . . . . . . . . . 11  |-  ( ph  ->  N  e.  NN )
2524nnzd 9438 . . . . . . . . . 10  |-  ( ph  ->  N  e.  ZZ )
2620, 25fzfigd 10502 . . . . . . . . 9  |-  ( ph  ->  ( 1 ... N
)  e.  Fin )
27 elfznn 10120 . . . . . . . . . . . . . 14  |-  ( x  e.  ( 1 ... M )  ->  x  e.  NN )
2827ad2antrl 490 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( x  e.  ( 1 ... M
)  /\  y  e.  ( 1 ... N
) ) )  ->  x  e.  NN )
291eldifad 3164 . . . . . . . . . . . . . . 15  |-  ( ph  ->  Q  e.  Prime )
3029adantr 276 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( x  e.  ( 1 ... M
)  /\  y  e.  ( 1 ... N
) ) )  ->  Q  e.  Prime )
31 prmnn 12248 . . . . . . . . . . . . . 14  |-  ( Q  e.  Prime  ->  Q  e.  NN )
3230, 31syl 14 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( x  e.  ( 1 ... M
)  /\  y  e.  ( 1 ... N
) ) )  ->  Q  e.  NN )
3328, 32nnmulcld 9031 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( x  e.  ( 1 ... M
)  /\  y  e.  ( 1 ... N
) ) )  -> 
( x  x.  Q
)  e.  NN )
3433nnzd 9438 . . . . . . . . . . 11  |-  ( (
ph  /\  ( x  e.  ( 1 ... M
)  /\  y  e.  ( 1 ... N
) ) )  -> 
( x  x.  Q
)  e.  ZZ )
35 elfznn 10120 . . . . . . . . . . . . . 14  |-  ( y  e.  ( 1 ... N )  ->  y  e.  NN )
3635ad2antll 491 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( x  e.  ( 1 ... M
)  /\  y  e.  ( 1 ... N
) ) )  -> 
y  e.  NN )
372gausslemma2dlem0a 15165 . . . . . . . . . . . . . 14  |-  ( ph  ->  P  e.  NN )
3837adantr 276 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( x  e.  ( 1 ... M
)  /\  y  e.  ( 1 ... N
) ) )  ->  P  e.  NN )
3936, 38nnmulcld 9031 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( x  e.  ( 1 ... M
)  /\  y  e.  ( 1 ... N
) ) )  -> 
( y  x.  P
)  e.  NN )
4039nnzd 9438 . . . . . . . . . . 11  |-  ( (
ph  /\  ( x  e.  ( 1 ... M
)  /\  y  e.  ( 1 ... N
) ) )  -> 
( y  x.  P
)  e.  ZZ )
41 zdclt 9394 . . . . . . . . . . 11  |-  ( ( ( x  x.  Q
)  e.  ZZ  /\  ( y  x.  P
)  e.  ZZ )  -> DECID 
( x  x.  Q
)  <  ( y  x.  P ) )
4234, 40, 41syl2anc 411 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  ( 1 ... M
)  /\  y  e.  ( 1 ... N
) ) )  -> DECID  (
x  x.  Q )  <  ( y  x.  P ) )
4342ralrimivva 2576 . . . . . . . . 9  |-  ( ph  ->  A. x  e.  ( 1 ... M ) A. y  e.  ( 1 ... N )DECID  ( x  x.  Q )  <  ( y  x.  P ) )
4419, 23, 26, 43opabfi 6992 . . . . . . . 8  |-  ( ph  ->  { <. x ,  y
>.  |  ( (
x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N ) )  /\  ( x  x.  Q )  <  (
y  x.  P ) ) }  e.  Fin )
45 cnven 6862 . . . . . . . 8  |-  ( ( Rel  { <. x ,  y >.  |  ( ( x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N ) )  /\  ( x  x.  Q )  < 
( y  x.  P
) ) }  /\  {
<. x ,  y >.  |  ( ( x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N
) )  /\  (
x  x.  Q )  <  ( y  x.  P ) ) }  e.  Fin )  ->  { <. x ,  y
>.  |  ( (
x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N ) )  /\  ( x  x.  Q )  <  (
y  x.  P ) ) }  ~~  `' { <. x ,  y
>.  |  ( (
x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N ) )  /\  ( x  x.  Q )  <  (
y  x.  P ) ) } )
4618, 44, 45sylancr 414 . . . . . . 7  |-  ( ph  ->  { <. x ,  y
>.  |  ( (
x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N ) )  /\  ( x  x.  Q )  <  (
y  x.  P ) ) }  ~~  `' { <. x ,  y
>.  |  ( (
x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N ) )  /\  ( x  x.  Q )  <  (
y  x.  P ) ) } )
47 cnvopab 5067 . . . . . . 7  |-  `' { <. x ,  y >.  |  ( ( x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N
) )  /\  (
x  x.  Q )  <  ( y  x.  P ) ) }  =  { <. y ,  x >.  |  (
( x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N ) )  /\  ( x  x.  Q )  < 
( y  x.  P
) ) }
4846, 47breqtrdi 4070 . . . . . 6  |-  ( ph  ->  { <. x ,  y
>.  |  ( (
x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N ) )  /\  ( x  x.  Q )  <  (
y  x.  P ) ) }  ~~  { <. y ,  x >.  |  ( ( x  e.  ( 1 ... M
)  /\  y  e.  ( 1 ... N
) )  /\  (
x  x.  Q )  <  ( y  x.  P ) ) } )
491, 2, 4, 5, 6, 16lgsquadlemsfi 15191 . . . . . . 7  |-  ( ph  ->  { <. y ,  x >.  |  ( ( x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N
) )  /\  (
x  x.  Q )  <  ( y  x.  P ) ) }  e.  Fin )
50 hashen 10855 . . . . . . 7  |-  ( ( { <. x ,  y
>.  |  ( (
x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N ) )  /\  ( x  x.  Q )  <  (
y  x.  P ) ) }  e.  Fin  /\ 
{ <. y ,  x >.  |  ( ( x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N
) )  /\  (
x  x.  Q )  <  ( y  x.  P ) ) }  e.  Fin )  -> 
( ( `  { <. x ,  y >.  |  ( ( x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N
) )  /\  (
x  x.  Q )  <  ( y  x.  P ) ) } )  =  ( `  { <. y ,  x >.  |  ( ( x  e.  ( 1 ... M
)  /\  y  e.  ( 1 ... N
) )  /\  (
x  x.  Q )  <  ( y  x.  P ) ) } )  <->  { <. x ,  y
>.  |  ( (
x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N ) )  /\  ( x  x.  Q )  <  (
y  x.  P ) ) }  ~~  { <. y ,  x >.  |  ( ( x  e.  ( 1 ... M
)  /\  y  e.  ( 1 ... N
) )  /\  (
x  x.  Q )  <  ( y  x.  P ) ) } ) )
5144, 49, 50syl2anc 411 . . . . . 6  |-  ( ph  ->  ( ( `  { <. x ,  y >.  |  ( ( x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N
) )  /\  (
x  x.  Q )  <  ( y  x.  P ) ) } )  =  ( `  { <. y ,  x >.  |  ( ( x  e.  ( 1 ... M
)  /\  y  e.  ( 1 ... N
) )  /\  (
x  x.  Q )  <  ( y  x.  P ) ) } )  <->  { <. x ,  y
>.  |  ( (
x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N ) )  /\  ( x  x.  Q )  <  (
y  x.  P ) ) }  ~~  { <. y ,  x >.  |  ( ( x  e.  ( 1 ... M
)  /\  y  e.  ( 1 ... N
) )  /\  (
x  x.  Q )  <  ( y  x.  P ) ) } ) )
5248, 51mpbird 167 . . . . 5  |-  ( ph  ->  ( `  { <. x ,  y >.  |  ( ( x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N ) )  /\  ( x  x.  Q )  < 
( y  x.  P
) ) } )  =  ( `  { <. y ,  x >.  |  ( ( x  e.  ( 1 ... M
)  /\  y  e.  ( 1 ... N
) )  /\  (
x  x.  Q )  <  ( y  x.  P ) ) } ) )
5352oveq2d 5934 . . . 4  |-  ( ph  ->  ( -u 1 ^ ( `  { <. x ,  y >.  |  ( ( x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N ) )  /\  ( x  x.  Q )  < 
( y  x.  P
) ) } ) )  =  ( -u
1 ^ ( `  { <. y ,  x >.  |  ( ( x  e.  ( 1 ... M
)  /\  y  e.  ( 1 ... N
) )  /\  (
x  x.  Q )  <  ( y  x.  P ) ) } ) ) )
5417, 53eqtr4d 2229 . . 3  |-  ( ph  ->  ( P  /L
Q )  =  (
-u 1 ^ ( `  { <. x ,  y
>.  |  ( (
x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N ) )  /\  ( x  x.  Q )  <  (
y  x.  P ) ) } ) ) )
55 lgsquad.6 . . . 4  |-  S  =  { <. x ,  y
>.  |  ( (
x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N ) )  /\  ( y  x.  P )  <  (
x  x.  Q ) ) }
562, 1, 3, 6, 5, 55lgsquadlem2 15194 . . 3  |-  ( ph  ->  ( Q  /L
P )  =  (
-u 1 ^ ( `  S ) ) )
5754, 56oveq12d 5936 . 2  |-  ( ph  ->  ( ( P  /L Q )  x.  ( Q  /L
P ) )  =  ( ( -u 1 ^ ( `  { <. x ,  y >.  |  ( ( x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N ) )  /\  ( x  x.  Q )  < 
( y  x.  P
) ) } ) )  x.  ( -u
1 ^ ( `  S
) ) ) )
58 neg1cn 9087 . . . 4  |-  -u 1  e.  CC
5958a1i 9 . . 3  |-  ( ph  -> 
-u 1  e.  CC )
602, 1, 3, 6, 5, 55lgsquadlemsfi 15191 . . . 4  |-  ( ph  ->  S  e.  Fin )
61 hashcl 10852 . . . 4  |-  ( S  e.  Fin  ->  ( `  S )  e.  NN0 )
6260, 61syl 14 . . 3  |-  ( ph  ->  ( `  S )  e.  NN0 )
63 hashcl 10852 . . . 4  |-  ( {
<. x ,  y >.  |  ( ( x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N
) )  /\  (
x  x.  Q )  <  ( y  x.  P ) ) }  e.  Fin  ->  ( `  { <. x ,  y
>.  |  ( (
x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N ) )  /\  ( x  x.  Q )  <  (
y  x.  P ) ) } )  e. 
NN0 )
6444, 63syl 14 . . 3  |-  ( ph  ->  ( `  { <. x ,  y >.  |  ( ( x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N ) )  /\  ( x  x.  Q )  < 
( y  x.  P
) ) } )  e.  NN0 )
6559, 62, 64expaddd 10746 . 2  |-  ( ph  ->  ( -u 1 ^ ( ( `  { <. x ,  y >.  |  ( ( x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N
) )  /\  (
x  x.  Q )  <  ( y  x.  P ) ) } )  +  ( `  S
) ) )  =  ( ( -u 1 ^ ( `  { <. x ,  y >.  |  ( ( x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N ) )  /\  ( x  x.  Q )  < 
( y  x.  P
) ) } ) )  x.  ( -u
1 ^ ( `  S
) ) ) )
6624adantr 276 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  ( x  e.  ( 1 ... M
)  /\  y  e.  ( 1 ... N
) ) )  ->  N  e.  NN )
6766nnzd 9438 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  ( x  e.  ( 1 ... M
)  /\  y  e.  ( 1 ... N
) ) )  ->  N  e.  ZZ )
68 prmz 12249 . . . . . . . . . . . . . . . . . . . 20  |-  ( Q  e.  Prime  ->  Q  e.  ZZ )
6930, 68syl 14 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  ( x  e.  ( 1 ... M
)  /\  y  e.  ( 1 ... N
) ) )  ->  Q  e.  ZZ )
70 peano2zm 9355 . . . . . . . . . . . . . . . . . . 19  |-  ( Q  e.  ZZ  ->  ( Q  -  1 )  e.  ZZ )
7169, 70syl 14 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  ( x  e.  ( 1 ... M
)  /\  y  e.  ( 1 ... N
) ) )  -> 
( Q  -  1 )  e.  ZZ )
7266nnred 8995 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  ( x  e.  ( 1 ... M
)  /\  y  e.  ( 1 ... N
) ) )  ->  N  e.  RR )
7371zred 9439 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  ( x  e.  ( 1 ... M
)  /\  y  e.  ( 1 ... N
) ) )  -> 
( Q  -  1 )  e.  RR )
74 prmuz2 12269 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( Q  e.  Prime  ->  Q  e.  ( ZZ>= `  2 )
)
7530, 74syl 14 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( (
ph  /\  ( x  e.  ( 1 ... M
)  /\  y  e.  ( 1 ... N
) ) )  ->  Q  e.  ( ZZ>= ` 
2 ) )
76 uz2m1nn 9670 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( Q  e.  ( ZZ>= `  2
)  ->  ( Q  -  1 )  e.  NN )
7775, 76syl 14 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( (
ph  /\  ( x  e.  ( 1 ... M
)  /\  y  e.  ( 1 ... N
) ) )  -> 
( Q  -  1 )  e.  NN )
7877nnrpd 9760 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  ( x  e.  ( 1 ... M
)  /\  y  e.  ( 1 ... N
) ) )  -> 
( Q  -  1 )  e.  RR+ )
79 rphalflt 9749 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( Q  -  1 )  e.  RR+  ->  ( ( Q  -  1 )  /  2 )  < 
( Q  -  1 ) )
8078, 79syl 14 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  ( x  e.  ( 1 ... M
)  /\  y  e.  ( 1 ... N
) ) )  -> 
( ( Q  - 
1 )  /  2
)  <  ( Q  -  1 ) )
815, 80eqbrtrid 4064 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  ( x  e.  ( 1 ... M
)  /\  y  e.  ( 1 ... N
) ) )  ->  N  <  ( Q  - 
1 ) )
8272, 73, 81ltled 8138 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  ( x  e.  ( 1 ... M
)  /\  y  e.  ( 1 ... N
) ) )  ->  N  <_  ( Q  - 
1 ) )
83 eluz2 9598 . . . . . . . . . . . . . . . . . 18  |-  ( ( Q  -  1 )  e.  ( ZZ>= `  N
)  <->  ( N  e.  ZZ  /\  ( Q  -  1 )  e.  ZZ  /\  N  <_ 
( Q  -  1 ) ) )
8467, 71, 82, 83syl3anbrc 1183 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ( x  e.  ( 1 ... M
)  /\  y  e.  ( 1 ... N
) ) )  -> 
( Q  -  1 )  e.  ( ZZ>= `  N ) )
85 fzss2 10130 . . . . . . . . . . . . . . . . 17  |-  ( ( Q  -  1 )  e.  ( ZZ>= `  N
)  ->  ( 1 ... N )  C_  ( 1 ... ( Q  -  1 ) ) )
8684, 85syl 14 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( x  e.  ( 1 ... M
)  /\  y  e.  ( 1 ... N
) ) )  -> 
( 1 ... N
)  C_  ( 1 ... ( Q  - 
1 ) ) )
87 simprr 531 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( x  e.  ( 1 ... M
)  /\  y  e.  ( 1 ... N
) ) )  -> 
y  e.  ( 1 ... N ) )
8886, 87sseldd 3180 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( x  e.  ( 1 ... M
)  /\  y  e.  ( 1 ... N
) ) )  -> 
y  e.  ( 1 ... ( Q  - 
1 ) ) )
89 fzm1ndvds 11998 . . . . . . . . . . . . . . 15  |-  ( ( Q  e.  NN  /\  y  e.  ( 1 ... ( Q  - 
1 ) ) )  ->  -.  Q  ||  y
)
9032, 88, 89syl2anc 411 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( x  e.  ( 1 ... M
)  /\  y  e.  ( 1 ... N
) ) )  ->  -.  Q  ||  y )
914adantr 276 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( x  e.  ( 1 ... M
)  /\  y  e.  ( 1 ... N
) ) )  ->  Q  =/=  P )
922eldifad 3164 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  P  e.  Prime )
9392adantr 276 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ( x  e.  ( 1 ... M
)  /\  y  e.  ( 1 ... N
) ) )  ->  P  e.  Prime )
94 prmrp 12283 . . . . . . . . . . . . . . . . 17  |-  ( ( Q  e.  Prime  /\  P  e.  Prime )  ->  (
( Q  gcd  P
)  =  1  <->  Q  =/=  P ) )
9530, 93, 94syl2anc 411 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( x  e.  ( 1 ... M
)  /\  y  e.  ( 1 ... N
) ) )  -> 
( ( Q  gcd  P )  =  1  <->  Q  =/=  P ) )
9691, 95mpbird 167 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( x  e.  ( 1 ... M
)  /\  y  e.  ( 1 ... N
) ) )  -> 
( Q  gcd  P
)  =  1 )
97 prmz 12249 . . . . . . . . . . . . . . . . 17  |-  ( P  e.  Prime  ->  P  e.  ZZ )
9893, 97syl 14 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( x  e.  ( 1 ... M
)  /\  y  e.  ( 1 ... N
) ) )  ->  P  e.  ZZ )
99 elfzelz 10091 . . . . . . . . . . . . . . . . 17  |-  ( y  e.  ( 1 ... N )  ->  y  e.  ZZ )
10099ad2antll 491 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( x  e.  ( 1 ... M
)  /\  y  e.  ( 1 ... N
) ) )  -> 
y  e.  ZZ )
101 coprmdvds 12230 . . . . . . . . . . . . . . . 16  |-  ( ( Q  e.  ZZ  /\  P  e.  ZZ  /\  y  e.  ZZ )  ->  (
( Q  ||  ( P  x.  y )  /\  ( Q  gcd  P
)  =  1 )  ->  Q  ||  y
) )
10269, 98, 100, 101syl3anc 1249 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( x  e.  ( 1 ... M
)  /\  y  e.  ( 1 ... N
) ) )  -> 
( ( Q  ||  ( P  x.  y
)  /\  ( Q  gcd  P )  =  1 )  ->  Q  ||  y
) )
10396, 102mpan2d 428 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( x  e.  ( 1 ... M
)  /\  y  e.  ( 1 ... N
) ) )  -> 
( Q  ||  ( P  x.  y )  ->  Q  ||  y ) )
10490, 103mtod 664 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( x  e.  ( 1 ... M
)  /\  y  e.  ( 1 ... N
) ) )  ->  -.  Q  ||  ( P  x.  y ) )
10538nncnd 8996 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( x  e.  ( 1 ... M
)  /\  y  e.  ( 1 ... N
) ) )  ->  P  e.  CC )
10636nncnd 8996 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( x  e.  ( 1 ... M
)  /\  y  e.  ( 1 ... N
) ) )  -> 
y  e.  CC )
107105, 106mulcomd 8041 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( x  e.  ( 1 ... M
)  /\  y  e.  ( 1 ... N
) ) )  -> 
( P  x.  y
)  =  ( y  x.  P ) )
108107breq2d 4041 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( x  e.  ( 1 ... M
)  /\  y  e.  ( 1 ... N
) ) )  -> 
( Q  ||  ( P  x.  y )  <->  Q 
||  ( y  x.  P ) ) )
109104, 108mtbid 673 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( x  e.  ( 1 ... M
)  /\  y  e.  ( 1 ... N
) ) )  ->  -.  Q  ||  ( y  x.  P ) )
110 elfzelz 10091 . . . . . . . . . . . . . . . 16  |-  ( x  e.  ( 1 ... M )  ->  x  e.  ZZ )
111110ad2antrl 490 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( x  e.  ( 1 ... M
)  /\  y  e.  ( 1 ... N
) ) )  ->  x  e.  ZZ )
112 dvdsmul2 11957 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  ZZ  /\  Q  e.  ZZ )  ->  Q  ||  ( x  x.  Q ) )
113111, 69, 112syl2anc 411 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( x  e.  ( 1 ... M
)  /\  y  e.  ( 1 ... N
) ) )  ->  Q  ||  ( x  x.  Q ) )
114 breq2 4033 . . . . . . . . . . . . . 14  |-  ( ( x  x.  Q )  =  ( y  x.  P )  ->  ( Q  ||  ( x  x.  Q )  <->  Q  ||  (
y  x.  P ) ) )
115113, 114syl5ibcom 155 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( x  e.  ( 1 ... M
)  /\  y  e.  ( 1 ... N
) ) )  -> 
( ( x  x.  Q )  =  ( y  x.  P )  ->  Q  ||  (
y  x.  P ) ) )
116115necon3bd 2407 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( x  e.  ( 1 ... M
)  /\  y  e.  ( 1 ... N
) ) )  -> 
( -.  Q  ||  ( y  x.  P
)  ->  ( x  x.  Q )  =/=  (
y  x.  P ) ) )
117109, 116mpd 13 . . . . . . . . . . 11  |-  ( (
ph  /\  ( x  e.  ( 1 ... M
)  /\  y  e.  ( 1 ... N
) ) )  -> 
( x  x.  Q
)  =/=  ( y  x.  P ) )
118 nnq 9698 . . . . . . . . . . . . 13  |-  ( ( x  x.  Q )  e.  NN  ->  (
x  x.  Q )  e.  QQ )
11933, 118syl 14 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( x  e.  ( 1 ... M
)  /\  y  e.  ( 1 ... N
) ) )  -> 
( x  x.  Q
)  e.  QQ )
120 nnq 9698 . . . . . . . . . . . . 13  |-  ( ( y  x.  P )  e.  NN  ->  (
y  x.  P )  e.  QQ )
12139, 120syl 14 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( x  e.  ( 1 ... M
)  /\  y  e.  ( 1 ... N
) ) )  -> 
( y  x.  P
)  e.  QQ )
122 qlttri2 9706 . . . . . . . . . . . 12  |-  ( ( ( x  x.  Q
)  e.  QQ  /\  ( y  x.  P
)  e.  QQ )  ->  ( ( x  x.  Q )  =/=  ( y  x.  P
)  <->  ( ( x  x.  Q )  < 
( y  x.  P
)  \/  ( y  x.  P )  < 
( x  x.  Q
) ) ) )
123119, 121, 122syl2anc 411 . . . . . . . . . . 11  |-  ( (
ph  /\  ( x  e.  ( 1 ... M
)  /\  y  e.  ( 1 ... N
) ) )  -> 
( ( x  x.  Q )  =/=  (
y  x.  P )  <-> 
( ( x  x.  Q )  <  (
y  x.  P )  \/  ( y  x.  P )  <  (
x  x.  Q ) ) ) )
124117, 123mpbid 147 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  ( 1 ... M
)  /\  y  e.  ( 1 ... N
) ) )  -> 
( ( x  x.  Q )  <  (
y  x.  P )  \/  ( y  x.  P )  <  (
x  x.  Q ) ) )
125124ex 115 . . . . . . . . 9  |-  ( ph  ->  ( ( x  e.  ( 1 ... M
)  /\  y  e.  ( 1 ... N
) )  ->  (
( x  x.  Q
)  <  ( y  x.  P )  \/  (
y  x.  P )  <  ( x  x.  Q ) ) ) )
126125pm4.71rd 394 . . . . . . . 8  |-  ( ph  ->  ( ( x  e.  ( 1 ... M
)  /\  y  e.  ( 1 ... N
) )  <->  ( (
( x  x.  Q
)  <  ( y  x.  P )  \/  (
y  x.  P )  <  ( x  x.  Q ) )  /\  ( x  e.  (
1 ... M )  /\  y  e.  ( 1 ... N ) ) ) ) )
127 ancom 266 . . . . . . . 8  |-  ( ( ( ( x  x.  Q )  <  (
y  x.  P )  \/  ( y  x.  P )  <  (
x  x.  Q ) )  /\  ( x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N
) ) )  <->  ( (
x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N ) )  /\  ( ( x  x.  Q )  < 
( y  x.  P
)  \/  ( y  x.  P )  < 
( x  x.  Q
) ) ) )
128126, 127bitr2di 197 . . . . . . 7  |-  ( ph  ->  ( ( ( x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N
) )  /\  (
( x  x.  Q
)  <  ( y  x.  P )  \/  (
y  x.  P )  <  ( x  x.  Q ) ) )  <-> 
( x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N ) ) ) )
129128opabbidv 4095 . . . . . 6  |-  ( ph  ->  { <. x ,  y
>.  |  ( (
x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N ) )  /\  ( ( x  x.  Q )  < 
( y  x.  P
)  \/  ( y  x.  P )  < 
( x  x.  Q
) ) ) }  =  { <. x ,  y >.  |  ( x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N ) ) } )
130 unopab 4108 . . . . . . 7  |-  ( {
<. x ,  y >.  |  ( ( x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N
) )  /\  (
x  x.  Q )  <  ( y  x.  P ) ) }  u.  { <. x ,  y >.  |  ( ( x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N ) )  /\  ( y  x.  P )  < 
( x  x.  Q
) ) } )  =  { <. x ,  y >.  |  ( ( ( x  e.  ( 1 ... M
)  /\  y  e.  ( 1 ... N
) )  /\  (
x  x.  Q )  <  ( y  x.  P ) )  \/  ( ( x  e.  ( 1 ... M
)  /\  y  e.  ( 1 ... N
) )  /\  (
y  x.  P )  <  ( x  x.  Q ) ) ) }
13155uneq2i 3310 . . . . . . 7  |-  ( {
<. x ,  y >.  |  ( ( x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N
) )  /\  (
x  x.  Q )  <  ( y  x.  P ) ) }  u.  S )  =  ( { <. x ,  y >.  |  ( ( x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N ) )  /\  ( x  x.  Q )  < 
( y  x.  P
) ) }  u.  {
<. x ,  y >.  |  ( ( x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N
) )  /\  (
y  x.  P )  <  ( x  x.  Q ) ) } )
132 andi 819 . . . . . . . 8  |-  ( ( ( x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N ) )  /\  ( ( x  x.  Q )  <  ( y  x.  P )  \/  (
y  x.  P )  <  ( x  x.  Q ) ) )  <-> 
( ( ( x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N
) )  /\  (
x  x.  Q )  <  ( y  x.  P ) )  \/  ( ( x  e.  ( 1 ... M
)  /\  y  e.  ( 1 ... N
) )  /\  (
y  x.  P )  <  ( x  x.  Q ) ) ) )
133132opabbii 4096 . . . . . . 7  |-  { <. x ,  y >.  |  ( ( x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N ) )  /\  ( ( x  x.  Q )  <  ( y  x.  P )  \/  (
y  x.  P )  <  ( x  x.  Q ) ) ) }  =  { <. x ,  y >.  |  ( ( ( x  e.  ( 1 ... M
)  /\  y  e.  ( 1 ... N
) )  /\  (
x  x.  Q )  <  ( y  x.  P ) )  \/  ( ( x  e.  ( 1 ... M
)  /\  y  e.  ( 1 ... N
) )  /\  (
y  x.  P )  <  ( x  x.  Q ) ) ) }
134130, 131, 1333eqtr4i 2224 . . . . . 6  |-  ( {
<. x ,  y >.  |  ( ( x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N
) )  /\  (
x  x.  Q )  <  ( y  x.  P ) ) }  u.  S )  =  { <. x ,  y
>.  |  ( (
x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N ) )  /\  ( ( x  x.  Q )  < 
( y  x.  P
)  \/  ( y  x.  P )  < 
( x  x.  Q
) ) ) }
135 df-xp 4665 . . . . . 6  |-  ( ( 1 ... M )  X.  ( 1 ... N ) )  =  { <. x ,  y
>.  |  ( x  e.  ( 1 ... M
)  /\  y  e.  ( 1 ... N
) ) }
136129, 134, 1353eqtr4g 2251 . . . . 5  |-  ( ph  ->  ( { <. x ,  y >.  |  ( ( x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N ) )  /\  ( x  x.  Q )  < 
( y  x.  P
) ) }  u.  S )  =  ( ( 1 ... M
)  X.  ( 1 ... N ) ) )
137136fveq2d 5558 . . . 4  |-  ( ph  ->  ( `  ( { <. x ,  y >.  |  ( ( x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N
) )  /\  (
x  x.  Q )  <  ( y  x.  P ) ) }  u.  S ) )  =  ( `  (
( 1 ... M
)  X.  ( 1 ... N ) ) ) )
138 inopab 4794 . . . . . . 7  |-  ( {
<. x ,  y >.  |  ( ( x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N
) )  /\  (
x  x.  Q )  <  ( y  x.  P ) ) }  i^i  { <. x ,  y >.  |  ( ( x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N ) )  /\  ( y  x.  P )  < 
( x  x.  Q
) ) } )  =  { <. x ,  y >.  |  ( ( ( x  e.  ( 1 ... M
)  /\  y  e.  ( 1 ... N
) )  /\  (
x  x.  Q )  <  ( y  x.  P ) )  /\  ( ( x  e.  ( 1 ... M
)  /\  y  e.  ( 1 ... N
) )  /\  (
y  x.  P )  <  ( x  x.  Q ) ) ) }
13955ineq2i 3357 . . . . . . 7  |-  ( {
<. x ,  y >.  |  ( ( x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N
) )  /\  (
x  x.  Q )  <  ( y  x.  P ) ) }  i^i  S )  =  ( { <. x ,  y >.  |  ( ( x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N ) )  /\  ( x  x.  Q )  < 
( y  x.  P
) ) }  i^i  {
<. x ,  y >.  |  ( ( x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N
) )  /\  (
y  x.  P )  <  ( x  x.  Q ) ) } )
140 anandi 590 . . . . . . . 8  |-  ( ( ( x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N ) )  /\  ( ( x  x.  Q )  <  ( y  x.  P )  /\  (
y  x.  P )  <  ( x  x.  Q ) ) )  <-> 
( ( ( x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N
) )  /\  (
x  x.  Q )  <  ( y  x.  P ) )  /\  ( ( x  e.  ( 1 ... M
)  /\  y  e.  ( 1 ... N
) )  /\  (
y  x.  P )  <  ( x  x.  Q ) ) ) )
141140opabbii 4096 . . . . . . 7  |-  { <. x ,  y >.  |  ( ( x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N ) )  /\  ( ( x  x.  Q )  <  ( y  x.  P )  /\  (
y  x.  P )  <  ( x  x.  Q ) ) ) }  =  { <. x ,  y >.  |  ( ( ( x  e.  ( 1 ... M
)  /\  y  e.  ( 1 ... N
) )  /\  (
x  x.  Q )  <  ( y  x.  P ) )  /\  ( ( x  e.  ( 1 ... M
)  /\  y  e.  ( 1 ... N
) )  /\  (
y  x.  P )  <  ( x  x.  Q ) ) ) }
142138, 139, 1413eqtr4i 2224 . . . . . 6  |-  ( {
<. x ,  y >.  |  ( ( x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N
) )  /\  (
x  x.  Q )  <  ( y  x.  P ) ) }  i^i  S )  =  { <. x ,  y
>.  |  ( (
x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N ) )  /\  ( ( x  x.  Q )  < 
( y  x.  P
)  /\  ( y  x.  P )  <  (
x  x.  Q ) ) ) }
14333nnred 8995 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( x  e.  ( 1 ... M
)  /\  y  e.  ( 1 ... N
) ) )  -> 
( x  x.  Q
)  e.  RR )
14439nnred 8995 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( x  e.  ( 1 ... M
)  /\  y  e.  ( 1 ... N
) ) )  -> 
( y  x.  P
)  e.  RR )
145 ltnsym2 8110 . . . . . . . . . . . . 13  |-  ( ( ( x  x.  Q
)  e.  RR  /\  ( y  x.  P
)  e.  RR )  ->  -.  ( (
x  x.  Q )  <  ( y  x.  P )  /\  (
y  x.  P )  <  ( x  x.  Q ) ) )
146143, 144, 145syl2anc 411 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( x  e.  ( 1 ... M
)  /\  y  e.  ( 1 ... N
) ) )  ->  -.  ( ( x  x.  Q )  <  (
y  x.  P )  /\  ( y  x.  P )  <  (
x  x.  Q ) ) )
147146ex 115 . . . . . . . . . . 11  |-  ( ph  ->  ( ( x  e.  ( 1 ... M
)  /\  y  e.  ( 1 ... N
) )  ->  -.  ( ( x  x.  Q )  <  (
y  x.  P )  /\  ( y  x.  P )  <  (
x  x.  Q ) ) ) )
148 imnan 691 . . . . . . . . . . 11  |-  ( ( ( x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N ) )  ->  -.  (
( x  x.  Q
)  <  ( y  x.  P )  /\  (
y  x.  P )  <  ( x  x.  Q ) ) )  <->  -.  ( ( x  e.  ( 1 ... M
)  /\  y  e.  ( 1 ... N
) )  /\  (
( x  x.  Q
)  <  ( y  x.  P )  /\  (
y  x.  P )  <  ( x  x.  Q ) ) ) )
149147, 148sylib 122 . . . . . . . . . 10  |-  ( ph  ->  -.  ( ( x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N
) )  /\  (
( x  x.  Q
)  <  ( y  x.  P )  /\  (
y  x.  P )  <  ( x  x.  Q ) ) ) )
150149nexdv 1952 . . . . . . . . 9  |-  ( ph  ->  -.  E. y ( ( x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N ) )  /\  ( ( x  x.  Q )  <  ( y  x.  P )  /\  (
y  x.  P )  <  ( x  x.  Q ) ) ) )
151150nexdv 1952 . . . . . . . 8  |-  ( ph  ->  -.  E. x E. y ( ( x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N
) )  /\  (
( x  x.  Q
)  <  ( y  x.  P )  /\  (
y  x.  P )  <  ( x  x.  Q ) ) ) )
152 opabm 4311 . . . . . . . 8  |-  ( E. j  j  e.  { <. x ,  y >.  |  ( ( x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N
) )  /\  (
( x  x.  Q
)  <  ( y  x.  P )  /\  (
y  x.  P )  <  ( x  x.  Q ) ) ) }  <->  E. x E. y
( ( x  e.  ( 1 ... M
)  /\  y  e.  ( 1 ... N
) )  /\  (
( x  x.  Q
)  <  ( y  x.  P )  /\  (
y  x.  P )  <  ( x  x.  Q ) ) ) )
153151, 152sylnibr 678 . . . . . . 7  |-  ( ph  ->  -.  E. j  j  e.  { <. x ,  y >.  |  ( ( x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N ) )  /\  ( ( x  x.  Q )  <  ( y  x.  P )  /\  (
y  x.  P )  <  ( x  x.  Q ) ) ) } )
154 notm0 3467 . . . . . . 7  |-  ( -. 
E. j  j  e. 
{ <. x ,  y
>.  |  ( (
x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N ) )  /\  ( ( x  x.  Q )  < 
( y  x.  P
)  /\  ( y  x.  P )  <  (
x  x.  Q ) ) ) }  <->  { <. x ,  y >.  |  ( ( x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N ) )  /\  ( ( x  x.  Q )  <  ( y  x.  P )  /\  (
y  x.  P )  <  ( x  x.  Q ) ) ) }  =  (/) )
155153, 154sylib 122 . . . . . 6  |-  ( ph  ->  { <. x ,  y
>.  |  ( (
x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N ) )  /\  ( ( x  x.  Q )  < 
( y  x.  P
)  /\  ( y  x.  P )  <  (
x  x.  Q ) ) ) }  =  (/) )
156142, 155eqtrid 2238 . . . . 5  |-  ( ph  ->  ( { <. x ,  y >.  |  ( ( x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N ) )  /\  ( x  x.  Q )  < 
( y  x.  P
) ) }  i^i  S )  =  (/) )
157 hashun 10876 . . . . 5  |-  ( ( { <. x ,  y
>.  |  ( (
x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N ) )  /\  ( x  x.  Q )  <  (
y  x.  P ) ) }  e.  Fin  /\  S  e.  Fin  /\  ( { <. x ,  y
>.  |  ( (
x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N ) )  /\  ( x  x.  Q )  <  (
y  x.  P ) ) }  i^i  S
)  =  (/) )  -> 
( `  ( { <. x ,  y >.  |  ( ( x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N ) )  /\  ( x  x.  Q )  < 
( y  x.  P
) ) }  u.  S ) )  =  ( ( `  { <. x ,  y >.  |  ( ( x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N
) )  /\  (
x  x.  Q )  <  ( y  x.  P ) ) } )  +  ( `  S
) ) )
15844, 60, 156, 157syl3anc 1249 . . . 4  |-  ( ph  ->  ( `  ( { <. x ,  y >.  |  ( ( x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N
) )  /\  (
x  x.  Q )  <  ( y  x.  P ) ) }  u.  S ) )  =  ( ( `  { <. x ,  y >.  |  ( ( x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N
) )  /\  (
x  x.  Q )  <  ( y  x.  P ) ) } )  +  ( `  S
) ) )
159 hashxp 10897 . . . . . 6  |-  ( ( ( 1 ... M
)  e.  Fin  /\  ( 1 ... N
)  e.  Fin )  ->  ( `  ( (
1 ... M )  X.  ( 1 ... N
) ) )  =  ( ( `  (
1 ... M ) )  x.  ( `  (
1 ... N ) ) ) )
16023, 26, 159syl2anc 411 . . . . 5  |-  ( ph  ->  ( `  ( (
1 ... M )  X.  ( 1 ... N
) ) )  =  ( ( `  (
1 ... M ) )  x.  ( `  (
1 ... N ) ) ) )
16121nnnn0d 9293 . . . . . . 7  |-  ( ph  ->  M  e.  NN0 )
162 hashfz1 10854 . . . . . . 7  |-  ( M  e.  NN0  ->  ( `  (
1 ... M ) )  =  M )
163161, 162syl 14 . . . . . 6  |-  ( ph  ->  ( `  ( 1 ... M ) )  =  M )
16424nnnn0d 9293 . . . . . . 7  |-  ( ph  ->  N  e.  NN0 )
165 hashfz1 10854 . . . . . . 7  |-  ( N  e.  NN0  ->  ( `  (
1 ... N ) )  =  N )
166164, 165syl 14 . . . . . 6  |-  ( ph  ->  ( `  ( 1 ... N ) )  =  N )
167163, 166oveq12d 5936 . . . . 5  |-  ( ph  ->  ( ( `  (
1 ... M ) )  x.  ( `  (
1 ... N ) ) )  =  ( M  x.  N ) )
168160, 167eqtrd 2226 . . . 4  |-  ( ph  ->  ( `  ( (
1 ... M )  X.  ( 1 ... N
) ) )  =  ( M  x.  N
) )
169137, 158, 1683eqtr3d 2234 . . 3  |-  ( ph  ->  ( ( `  { <. x ,  y >.  |  ( ( x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N
) )  /\  (
x  x.  Q )  <  ( y  x.  P ) ) } )  +  ( `  S
) )  =  ( M  x.  N ) )
170169oveq2d 5934 . 2  |-  ( ph  ->  ( -u 1 ^ ( ( `  { <. x ,  y >.  |  ( ( x  e.  ( 1 ... M )  /\  y  e.  ( 1 ... N
) )  /\  (
x  x.  Q )  <  ( y  x.  P ) ) } )  +  ( `  S
) ) )  =  ( -u 1 ^ ( M  x.  N
) ) )
17157, 65, 1703eqtr2d 2232 1  |-  ( ph  ->  ( ( P  /L Q )  x.  ( Q  /L
P ) )  =  ( -u 1 ^ ( M  x.  N
) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709  DECID wdc 835    = wceq 1364   E.wex 1503    e. wcel 2164    =/= wne 2364    \ cdif 3150    u. cun 3151    i^i cin 3152    C_ wss 3153   (/)c0 3446   {csn 3618   class class class wbr 4029   {copab 4089    X. cxp 4657   `'ccnv 4658   Rel wrel 4664   ` cfv 5254  (class class class)co 5918    ~~ cen 6792   Fincfn 6794   CCcc 7870   RRcr 7871   1c1 7873    + caddc 7875    x. cmul 7877    < clt 8054    <_ cle 8055    - cmin 8190   -ucneg 8191    / cdiv 8691   NNcn 8982   2c2 9033   NN0cn0 9240   ZZcz 9317   ZZ>=cuz 9592   QQcq 9684   RR+crp 9719   ...cfz 10074   ^cexp 10609  ♯chash 10846    || cdvds 11930    gcd cgcd 12079   Primecprime 12245    /Lclgs 15113
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulrcl 7971  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-precex 7982  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988  ax-pre-mulgt0 7989  ax-pre-mulext 7990  ax-arch 7991  ax-caucvg 7992  ax-addf 7994  ax-mulf 7995
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-xor 1387  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-tp 3626  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-disj 4007  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-po 4327  df-iso 4328  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-isom 5263  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-of 6130  df-1st 6193  df-2nd 6194  df-tpos 6298  df-recs 6358  df-irdg 6423  df-frec 6444  df-1o 6469  df-2o 6470  df-oadd 6473  df-er 6587  df-ec 6589  df-qs 6593  df-map 6704  df-en 6795  df-dom 6796  df-fin 6797  df-sup 7043  df-inf 7044  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-reap 8594  df-ap 8601  df-div 8692  df-inn 8983  df-2 9041  df-3 9042  df-4 9043  df-5 9044  df-6 9045  df-7 9046  df-8 9047  df-9 9048  df-n0 9241  df-z 9318  df-dec 9449  df-uz 9593  df-q 9685  df-rp 9720  df-fz 10075  df-fzo 10209  df-fl 10339  df-mod 10394  df-seqfrec 10519  df-exp 10610  df-ihash 10847  df-cj 10986  df-re 10987  df-im 10988  df-rsqrt 11142  df-abs 11143  df-clim 11422  df-sumdc 11497  df-proddc 11694  df-dvds 11931  df-gcd 12080  df-prm 12246  df-phi 12349  df-pc 12423  df-struct 12620  df-ndx 12621  df-slot 12622  df-base 12624  df-sets 12625  df-iress 12626  df-plusg 12708  df-mulr 12709  df-starv 12710  df-sca 12711  df-vsca 12712  df-ip 12713  df-ple 12715  df-0g 12869  df-igsum 12870  df-iimas 12885  df-qus 12886  df-mgm 12939  df-sgrp 12985  df-mnd 12998  df-mhm 13031  df-submnd 13032  df-grp 13075  df-minusg 13076  df-sbg 13077  df-mulg 13190  df-subg 13240  df-nsg 13241  df-eqg 13242  df-ghm 13311  df-cmn 13356  df-abl 13357  df-mgp 13417  df-rng 13429  df-ur 13456  df-srg 13460  df-ring 13494  df-cring 13495  df-oppr 13564  df-dvdsr 13585  df-unit 13586  df-invr 13617  df-dvr 13628  df-rhm 13648  df-nzr 13676  df-subrg 13715  df-domn 13755  df-idom 13756  df-lmod 13785  df-lssm 13849  df-lsp 13883  df-sra 13931  df-rgmod 13932  df-lidl 13965  df-rsp 13966  df-2idl 13996  df-icnfld 14048  df-zring 14079  df-zrh 14102  df-zn 14104  df-lgs 15114
This theorem is referenced by:  lgsquad  15196
  Copyright terms: Public domain W3C validator