ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  relopab Unicode version

Theorem relopab 4793
Description: A class of ordered pairs is a relation. (Contributed by NM, 8-Mar-1995.) (Unnecessary distinct variable restrictions were removed by Alan Sare, 9-Jul-2013.) (Proof shortened by Mario Carneiro, 21-Dec-2013.)
Assertion
Ref Expression
relopab  |-  Rel  { <. x ,  y >.  |  ph }

Proof of Theorem relopab
StepHypRef Expression
1 eqid 2196 . 2  |-  { <. x ,  y >.  |  ph }  =  { <. x ,  y >.  |  ph }
21relopabi 4792 1  |-  Rel  { <. x ,  y >.  |  ph }
Colors of variables: wff set class
Syntax hints:   {copab 4094   Rel wrel 4669
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-opab 4096  df-xp 4670  df-rel 4671
This theorem is referenced by:  brabv  4794  opabid2  4798  inopab  4799  difopab  4800  dfres2  4999  cnvopab  5072  funopab  5294  elopabi  6262  exmidapne  7343  shftfn  11006  releqgg  13426  lmreltop  14513
  Copyright terms: Public domain W3C validator