ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  relopab Unicode version

Theorem relopab 4789
Description: A class of ordered pairs is a relation. (Contributed by NM, 8-Mar-1995.) (Unnecessary distinct variable restrictions were removed by Alan Sare, 9-Jul-2013.) (Proof shortened by Mario Carneiro, 21-Dec-2013.)
Assertion
Ref Expression
relopab  |-  Rel  { <. x ,  y >.  |  ph }

Proof of Theorem relopab
StepHypRef Expression
1 eqid 2193 . 2  |-  { <. x ,  y >.  |  ph }  =  { <. x ,  y >.  |  ph }
21relopabi 4788 1  |-  Rel  { <. x ,  y >.  |  ph }
Colors of variables: wff set class
Syntax hints:   {copab 4090   Rel wrel 4665
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-opab 4092  df-xp 4666  df-rel 4667
This theorem is referenced by:  brabv  4790  opabid2  4794  inopab  4795  difopab  4796  dfres2  4995  cnvopab  5068  funopab  5290  elopabi  6250  exmidapne  7322  shftfn  10971  releqgg  13293  lmreltop  14372
  Copyright terms: Public domain W3C validator