ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  relopabi Unicode version

Theorem relopabi 4551
Description: A class of ordered pairs is a relation. (Contributed by Mario Carneiro, 21-Dec-2013.)
Hypothesis
Ref Expression
relopabi.1  |-  A  =  { <. x ,  y
>.  |  ph }
Assertion
Ref Expression
relopabi  |-  Rel  A

Proof of Theorem relopabi
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 relopabi.1 . . . 4  |-  A  =  { <. x ,  y
>.  |  ph }
2 df-opab 3892 . . . 4  |-  { <. x ,  y >.  |  ph }  =  { z  |  E. x E. y
( z  =  <. x ,  y >.  /\  ph ) }
31, 2eqtri 2108 . . 3  |-  A  =  { z  |  E. x E. y ( z  =  <. x ,  y
>.  /\  ph ) }
4 vex 2622 . . . . . . . 8  |-  x  e. 
_V
5 vex 2622 . . . . . . . 8  |-  y  e. 
_V
64, 5opelvv 4476 . . . . . . 7  |-  <. x ,  y >.  e.  ( _V  X.  _V )
7 eleq1 2150 . . . . . . 7  |-  ( z  =  <. x ,  y
>.  ->  ( z  e.  ( _V  X.  _V ) 
<-> 
<. x ,  y >.  e.  ( _V  X.  _V ) ) )
86, 7mpbiri 166 . . . . . 6  |-  ( z  =  <. x ,  y
>.  ->  z  e.  ( _V  X.  _V )
)
98adantr 270 . . . . 5  |-  ( ( z  =  <. x ,  y >.  /\  ph )  ->  z  e.  ( _V  X.  _V )
)
109exlimivv 1824 . . . 4  |-  ( E. x E. y ( z  =  <. x ,  y >.  /\  ph )  ->  z  e.  ( _V  X.  _V )
)
1110abssi 3094 . . 3  |-  { z  |  E. x E. y ( z  = 
<. x ,  y >.  /\  ph ) }  C_  ( _V  X.  _V )
123, 11eqsstri 3054 . 2  |-  A  C_  ( _V  X.  _V )
13 df-rel 4435 . 2  |-  ( Rel 
A  <->  A  C_  ( _V 
X.  _V ) )
1412, 13mpbir 144 1  |-  Rel  A
Colors of variables: wff set class
Syntax hints:    /\ wa 102    = wceq 1289   E.wex 1426    e. wcel 1438   {cab 2074   _Vcvv 2619    C_ wss 2997   <.cop 3444   {copab 3890    X. cxp 4426   Rel wrel 4433
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-sep 3949  ax-pow 4001  ax-pr 4027
This theorem depends on definitions:  df-bi 115  df-3an 926  df-tru 1292  df-nf 1395  df-sb 1693  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ral 2364  df-rex 2365  df-v 2621  df-un 3001  df-in 3003  df-ss 3010  df-pw 3427  df-sn 3447  df-pr 3448  df-op 3450  df-opab 3892  df-xp 4434  df-rel 4435
This theorem is referenced by:  relopab  4552  reli  4553  rele  4554  relcnv  4797  cotr  4800  relco  4916  reloprab  5679  reldmoprab  5715  eqer  6304  ecopover  6370  ecopoverg  6373  relen  6441  reldom  6442  enq0er  6973  climrel  10632
  Copyright terms: Public domain W3C validator