| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > relopabi | Unicode version | ||
| Description: A class of ordered pairs is a relation. (Contributed by Mario Carneiro, 21-Dec-2013.) |
| Ref | Expression |
|---|---|
| relopabi.1 |
|
| Ref | Expression |
|---|---|
| relopabi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relopabi.1 |
. . . 4
| |
| 2 | df-opab 4107 |
. . . 4
| |
| 3 | 1, 2 | eqtri 2226 |
. . 3
|
| 4 | vex 2775 |
. . . . . . . 8
| |
| 5 | vex 2775 |
. . . . . . . 8
| |
| 6 | 4, 5 | opelvv 4726 |
. . . . . . 7
|
| 7 | eleq1 2268 |
. . . . . . 7
| |
| 8 | 6, 7 | mpbiri 168 |
. . . . . 6
|
| 9 | 8 | adantr 276 |
. . . . 5
|
| 10 | 9 | exlimivv 1920 |
. . . 4
|
| 11 | 10 | abssi 3268 |
. . 3
|
| 12 | 3, 11 | eqsstri 3225 |
. 2
|
| 13 | df-rel 4683 |
. 2
| |
| 14 | 12, 13 | mpbir 146 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4163 ax-pow 4219 ax-pr 4254 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-opab 4107 df-xp 4682 df-rel 4683 |
| This theorem is referenced by: relopab 4805 mptrel 4807 reli 4808 rele 4809 relcnv 5061 cotr 5065 relco 5182 reloprab 5995 reldmoprab 6032 eqer 6654 ecopover 6722 ecopoverg 6725 relen 6833 reldom 6834 enq0er 7550 aprcl 8721 aptap 8725 climrel 11624 brstruct 12874 |
| Copyright terms: Public domain | W3C validator |