| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > relopabi | Unicode version | ||
| Description: A class of ordered pairs is a relation. (Contributed by Mario Carneiro, 21-Dec-2013.) |
| Ref | Expression |
|---|---|
| relopabi.1 |
|
| Ref | Expression |
|---|---|
| relopabi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relopabi.1 |
. . . 4
| |
| 2 | df-opab 4146 |
. . . 4
| |
| 3 | 1, 2 | eqtri 2250 |
. . 3
|
| 4 | vex 2802 |
. . . . . . . 8
| |
| 5 | vex 2802 |
. . . . . . . 8
| |
| 6 | 4, 5 | opelvv 4769 |
. . . . . . 7
|
| 7 | eleq1 2292 |
. . . . . . 7
| |
| 8 | 6, 7 | mpbiri 168 |
. . . . . 6
|
| 9 | 8 | adantr 276 |
. . . . 5
|
| 10 | 9 | exlimivv 1943 |
. . . 4
|
| 11 | 10 | abssi 3299 |
. . 3
|
| 12 | 3, 11 | eqsstri 3256 |
. 2
|
| 13 | df-rel 4726 |
. 2
| |
| 14 | 12, 13 | mpbir 146 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-opab 4146 df-xp 4725 df-rel 4726 |
| This theorem is referenced by: relopab 4848 mptrel 4850 reli 4851 rele 4852 relcnv 5106 cotr 5110 relco 5227 reloprab 6052 reldmoprab 6089 eqer 6712 ecopover 6780 ecopoverg 6783 relen 6891 reldom 6892 enq0er 7622 aprcl 8793 aptap 8797 climrel 11791 brstruct 13041 |
| Copyright terms: Public domain | W3C validator |