| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > relopabi | Unicode version | ||
| Description: A class of ordered pairs is a relation. (Contributed by Mario Carneiro, 21-Dec-2013.) | 
| Ref | Expression | 
|---|---|
| relopabi.1 | 
 | 
| Ref | Expression | 
|---|---|
| relopabi | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | relopabi.1 | 
. . . 4
 | |
| 2 | df-opab 4095 | 
. . . 4
 | |
| 3 | 1, 2 | eqtri 2217 | 
. . 3
 | 
| 4 | vex 2766 | 
. . . . . . . 8
 | |
| 5 | vex 2766 | 
. . . . . . . 8
 | |
| 6 | 4, 5 | opelvv 4713 | 
. . . . . . 7
 | 
| 7 | eleq1 2259 | 
. . . . . . 7
 | |
| 8 | 6, 7 | mpbiri 168 | 
. . . . . 6
 | 
| 9 | 8 | adantr 276 | 
. . . . 5
 | 
| 10 | 9 | exlimivv 1911 | 
. . . 4
 | 
| 11 | 10 | abssi 3258 | 
. . 3
 | 
| 12 | 3, 11 | eqsstri 3215 | 
. 2
 | 
| 13 | df-rel 4670 | 
. 2
 | |
| 14 | 12, 13 | mpbir 146 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-opab 4095 df-xp 4669 df-rel 4670 | 
| This theorem is referenced by: relopab 4792 mptrel 4794 reli 4795 rele 4796 relcnv 5047 cotr 5051 relco 5168 reloprab 5970 reldmoprab 6007 eqer 6624 ecopover 6692 ecopoverg 6695 relen 6803 reldom 6804 enq0er 7502 aprcl 8673 aptap 8677 climrel 11445 brstruct 12687 | 
| Copyright terms: Public domain | W3C validator |