ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  relopabi Unicode version

Theorem relopabi 4660
Description: A class of ordered pairs is a relation. (Contributed by Mario Carneiro, 21-Dec-2013.)
Hypothesis
Ref Expression
relopabi.1  |-  A  =  { <. x ,  y
>.  |  ph }
Assertion
Ref Expression
relopabi  |-  Rel  A

Proof of Theorem relopabi
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 relopabi.1 . . . 4  |-  A  =  { <. x ,  y
>.  |  ph }
2 df-opab 3985 . . . 4  |-  { <. x ,  y >.  |  ph }  =  { z  |  E. x E. y
( z  =  <. x ,  y >.  /\  ph ) }
31, 2eqtri 2158 . . 3  |-  A  =  { z  |  E. x E. y ( z  =  <. x ,  y
>.  /\  ph ) }
4 vex 2684 . . . . . . . 8  |-  x  e. 
_V
5 vex 2684 . . . . . . . 8  |-  y  e. 
_V
64, 5opelvv 4584 . . . . . . 7  |-  <. x ,  y >.  e.  ( _V  X.  _V )
7 eleq1 2200 . . . . . . 7  |-  ( z  =  <. x ,  y
>.  ->  ( z  e.  ( _V  X.  _V ) 
<-> 
<. x ,  y >.  e.  ( _V  X.  _V ) ) )
86, 7mpbiri 167 . . . . . 6  |-  ( z  =  <. x ,  y
>.  ->  z  e.  ( _V  X.  _V )
)
98adantr 274 . . . . 5  |-  ( ( z  =  <. x ,  y >.  /\  ph )  ->  z  e.  ( _V  X.  _V )
)
109exlimivv 1868 . . . 4  |-  ( E. x E. y ( z  =  <. x ,  y >.  /\  ph )  ->  z  e.  ( _V  X.  _V )
)
1110abssi 3167 . . 3  |-  { z  |  E. x E. y ( z  = 
<. x ,  y >.  /\  ph ) }  C_  ( _V  X.  _V )
123, 11eqsstri 3124 . 2  |-  A  C_  ( _V  X.  _V )
13 df-rel 4541 . 2  |-  ( Rel 
A  <->  A  C_  ( _V 
X.  _V ) )
1412, 13mpbir 145 1  |-  Rel  A
Colors of variables: wff set class
Syntax hints:    /\ wa 103    = wceq 1331   E.wex 1468    e. wcel 1480   {cab 2123   _Vcvv 2681    C_ wss 3066   <.cop 3525   {copab 3983    X. cxp 4532   Rel wrel 4539
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-sep 4041  ax-pow 4093  ax-pr 4126
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ral 2419  df-rex 2420  df-v 2683  df-un 3070  df-in 3072  df-ss 3079  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-opab 3985  df-xp 4540  df-rel 4541
This theorem is referenced by:  relopab  4661  mptrel  4662  reli  4663  rele  4664  relcnv  4912  cotr  4915  relco  5032  reloprab  5812  reldmoprab  5849  eqer  6454  ecopover  6520  ecopoverg  6523  relen  6631  reldom  6632  enq0er  7236  aprcl  8401  climrel  11042  brstruct  11957
  Copyright terms: Public domain W3C validator