Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > relopabi | Unicode version |
Description: A class of ordered pairs is a relation. (Contributed by Mario Carneiro, 21-Dec-2013.) |
Ref | Expression |
---|---|
relopabi.1 |
Ref | Expression |
---|---|
relopabi |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relopabi.1 | . . . 4 | |
2 | df-opab 4044 | . . . 4 | |
3 | 1, 2 | eqtri 2186 | . . 3 |
4 | vex 2729 | . . . . . . . 8 | |
5 | vex 2729 | . . . . . . . 8 | |
6 | 4, 5 | opelvv 4654 | . . . . . . 7 |
7 | eleq1 2229 | . . . . . . 7 | |
8 | 6, 7 | mpbiri 167 | . . . . . 6 |
9 | 8 | adantr 274 | . . . . 5 |
10 | 9 | exlimivv 1884 | . . . 4 |
11 | 10 | abssi 3217 | . . 3 |
12 | 3, 11 | eqsstri 3174 | . 2 |
13 | df-rel 4611 | . 2 | |
14 | 12, 13 | mpbir 145 | 1 |
Colors of variables: wff set class |
Syntax hints: wa 103 wceq 1343 wex 1480 wcel 2136 cab 2151 cvv 2726 wss 3116 cop 3579 copab 4042 cxp 4602 wrel 4609 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-opab 4044 df-xp 4610 df-rel 4611 |
This theorem is referenced by: relopab 4731 mptrel 4732 reli 4733 rele 4734 relcnv 4982 cotr 4985 relco 5102 reloprab 5890 reldmoprab 5927 eqer 6533 ecopover 6599 ecopoverg 6602 relen 6710 reldom 6711 enq0er 7376 aprcl 8544 climrel 11221 brstruct 12403 |
Copyright terms: Public domain | W3C validator |