| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > relopabi | Unicode version | ||
| Description: A class of ordered pairs is a relation. (Contributed by Mario Carneiro, 21-Dec-2013.) |
| Ref | Expression |
|---|---|
| relopabi.1 |
|
| Ref | Expression |
|---|---|
| relopabi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relopabi.1 |
. . . 4
| |
| 2 | df-opab 4122 |
. . . 4
| |
| 3 | 1, 2 | eqtri 2228 |
. . 3
|
| 4 | vex 2779 |
. . . . . . . 8
| |
| 5 | vex 2779 |
. . . . . . . 8
| |
| 6 | 4, 5 | opelvv 4743 |
. . . . . . 7
|
| 7 | eleq1 2270 |
. . . . . . 7
| |
| 8 | 6, 7 | mpbiri 168 |
. . . . . 6
|
| 9 | 8 | adantr 276 |
. . . . 5
|
| 10 | 9 | exlimivv 1921 |
. . . 4
|
| 11 | 10 | abssi 3276 |
. . 3
|
| 12 | 3, 11 | eqsstri 3233 |
. 2
|
| 13 | df-rel 4700 |
. 2
| |
| 14 | 12, 13 | mpbir 146 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-v 2778 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-opab 4122 df-xp 4699 df-rel 4700 |
| This theorem is referenced by: relopab 4822 mptrel 4824 reli 4825 rele 4826 relcnv 5079 cotr 5083 relco 5200 reloprab 6016 reldmoprab 6053 eqer 6675 ecopover 6743 ecopoverg 6746 relen 6854 reldom 6855 enq0er 7583 aprcl 8754 aptap 8758 climrel 11706 brstruct 12956 |
| Copyright terms: Public domain | W3C validator |