ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  relopabi Unicode version

Theorem relopabi 4804
Description: A class of ordered pairs is a relation. (Contributed by Mario Carneiro, 21-Dec-2013.)
Hypothesis
Ref Expression
relopabi.1  |-  A  =  { <. x ,  y
>.  |  ph }
Assertion
Ref Expression
relopabi  |-  Rel  A

Proof of Theorem relopabi
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 relopabi.1 . . . 4  |-  A  =  { <. x ,  y
>.  |  ph }
2 df-opab 4107 . . . 4  |-  { <. x ,  y >.  |  ph }  =  { z  |  E. x E. y
( z  =  <. x ,  y >.  /\  ph ) }
31, 2eqtri 2226 . . 3  |-  A  =  { z  |  E. x E. y ( z  =  <. x ,  y
>.  /\  ph ) }
4 vex 2775 . . . . . . . 8  |-  x  e. 
_V
5 vex 2775 . . . . . . . 8  |-  y  e. 
_V
64, 5opelvv 4726 . . . . . . 7  |-  <. x ,  y >.  e.  ( _V  X.  _V )
7 eleq1 2268 . . . . . . 7  |-  ( z  =  <. x ,  y
>.  ->  ( z  e.  ( _V  X.  _V ) 
<-> 
<. x ,  y >.  e.  ( _V  X.  _V ) ) )
86, 7mpbiri 168 . . . . . 6  |-  ( z  =  <. x ,  y
>.  ->  z  e.  ( _V  X.  _V )
)
98adantr 276 . . . . 5  |-  ( ( z  =  <. x ,  y >.  /\  ph )  ->  z  e.  ( _V  X.  _V )
)
109exlimivv 1920 . . . 4  |-  ( E. x E. y ( z  =  <. x ,  y >.  /\  ph )  ->  z  e.  ( _V  X.  _V )
)
1110abssi 3268 . . 3  |-  { z  |  E. x E. y ( z  = 
<. x ,  y >.  /\  ph ) }  C_  ( _V  X.  _V )
123, 11eqsstri 3225 . 2  |-  A  C_  ( _V  X.  _V )
13 df-rel 4683 . 2  |-  ( Rel 
A  <->  A  C_  ( _V 
X.  _V ) )
1412, 13mpbir 146 1  |-  Rel  A
Colors of variables: wff set class
Syntax hints:    /\ wa 104    = wceq 1373   E.wex 1515    e. wcel 2176   {cab 2191   _Vcvv 2772    C_ wss 3166   <.cop 3636   {copab 4105    X. cxp 4674   Rel wrel 4681
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4163  ax-pow 4219  ax-pr 4254
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-opab 4107  df-xp 4682  df-rel 4683
This theorem is referenced by:  relopab  4805  mptrel  4807  reli  4808  rele  4809  relcnv  5061  cotr  5065  relco  5182  reloprab  5995  reldmoprab  6032  eqer  6654  ecopover  6722  ecopoverg  6725  relen  6833  reldom  6834  enq0er  7550  aprcl  8721  aptap  8725  climrel  11624  brstruct  12874
  Copyright terms: Public domain W3C validator