ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  relopabi Unicode version

Theorem relopabi 4752
Description: A class of ordered pairs is a relation. (Contributed by Mario Carneiro, 21-Dec-2013.)
Hypothesis
Ref Expression
relopabi.1  |-  A  =  { <. x ,  y
>.  |  ph }
Assertion
Ref Expression
relopabi  |-  Rel  A

Proof of Theorem relopabi
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 relopabi.1 . . . 4  |-  A  =  { <. x ,  y
>.  |  ph }
2 df-opab 4065 . . . 4  |-  { <. x ,  y >.  |  ph }  =  { z  |  E. x E. y
( z  =  <. x ,  y >.  /\  ph ) }
31, 2eqtri 2198 . . 3  |-  A  =  { z  |  E. x E. y ( z  =  <. x ,  y
>.  /\  ph ) }
4 vex 2740 . . . . . . . 8  |-  x  e. 
_V
5 vex 2740 . . . . . . . 8  |-  y  e. 
_V
64, 5opelvv 4676 . . . . . . 7  |-  <. x ,  y >.  e.  ( _V  X.  _V )
7 eleq1 2240 . . . . . . 7  |-  ( z  =  <. x ,  y
>.  ->  ( z  e.  ( _V  X.  _V ) 
<-> 
<. x ,  y >.  e.  ( _V  X.  _V ) ) )
86, 7mpbiri 168 . . . . . 6  |-  ( z  =  <. x ,  y
>.  ->  z  e.  ( _V  X.  _V )
)
98adantr 276 . . . . 5  |-  ( ( z  =  <. x ,  y >.  /\  ph )  ->  z  e.  ( _V  X.  _V )
)
109exlimivv 1896 . . . 4  |-  ( E. x E. y ( z  =  <. x ,  y >.  /\  ph )  ->  z  e.  ( _V  X.  _V )
)
1110abssi 3230 . . 3  |-  { z  |  E. x E. y ( z  = 
<. x ,  y >.  /\  ph ) }  C_  ( _V  X.  _V )
123, 11eqsstri 3187 . 2  |-  A  C_  ( _V  X.  _V )
13 df-rel 4633 . 2  |-  ( Rel 
A  <->  A  C_  ( _V 
X.  _V ) )
1412, 13mpbir 146 1  |-  Rel  A
Colors of variables: wff set class
Syntax hints:    /\ wa 104    = wceq 1353   E.wex 1492    e. wcel 2148   {cab 2163   _Vcvv 2737    C_ wss 3129   <.cop 3595   {copab 4063    X. cxp 4624   Rel wrel 4631
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4121  ax-pow 4174  ax-pr 4209
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2739  df-un 3133  df-in 3135  df-ss 3142  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-opab 4065  df-xp 4632  df-rel 4633
This theorem is referenced by:  relopab  4753  mptrel  4755  reli  4756  rele  4757  relcnv  5006  cotr  5010  relco  5127  reloprab  5922  reldmoprab  5959  eqer  6566  ecopover  6632  ecopoverg  6635  relen  6743  reldom  6744  enq0er  7433  aprcl  8602  aptap  8606  climrel  11287  brstruct  12470
  Copyright terms: Public domain W3C validator