Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > relopabi | Unicode version |
Description: A class of ordered pairs is a relation. (Contributed by Mario Carneiro, 21-Dec-2013.) |
Ref | Expression |
---|---|
relopabi.1 |
Ref | Expression |
---|---|
relopabi |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relopabi.1 | . . . 4 | |
2 | df-opab 4049 | . . . 4 | |
3 | 1, 2 | eqtri 2191 | . . 3 |
4 | vex 2733 | . . . . . . . 8 | |
5 | vex 2733 | . . . . . . . 8 | |
6 | 4, 5 | opelvv 4659 | . . . . . . 7 |
7 | eleq1 2233 | . . . . . . 7 | |
8 | 6, 7 | mpbiri 167 | . . . . . 6 |
9 | 8 | adantr 274 | . . . . 5 |
10 | 9 | exlimivv 1889 | . . . 4 |
11 | 10 | abssi 3222 | . . 3 |
12 | 3, 11 | eqsstri 3179 | . 2 |
13 | df-rel 4616 | . 2 | |
14 | 12, 13 | mpbir 145 | 1 |
Colors of variables: wff set class |
Syntax hints: wa 103 wceq 1348 wex 1485 wcel 2141 cab 2156 cvv 2730 wss 3121 cop 3584 copab 4047 cxp 4607 wrel 4614 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4105 ax-pow 4158 ax-pr 4192 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-pw 3566 df-sn 3587 df-pr 3588 df-op 3590 df-opab 4049 df-xp 4615 df-rel 4616 |
This theorem is referenced by: relopab 4736 mptrel 4737 reli 4738 rele 4739 relcnv 4987 cotr 4990 relco 5107 reloprab 5898 reldmoprab 5935 eqer 6541 ecopover 6607 ecopoverg 6610 relen 6718 reldom 6719 enq0er 7384 aprcl 8552 climrel 11230 brstruct 12412 |
Copyright terms: Public domain | W3C validator |