ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  relopabi Unicode version

Theorem relopabi 4735
Description: A class of ordered pairs is a relation. (Contributed by Mario Carneiro, 21-Dec-2013.)
Hypothesis
Ref Expression
relopabi.1  |-  A  =  { <. x ,  y
>.  |  ph }
Assertion
Ref Expression
relopabi  |-  Rel  A

Proof of Theorem relopabi
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 relopabi.1 . . . 4  |-  A  =  { <. x ,  y
>.  |  ph }
2 df-opab 4049 . . . 4  |-  { <. x ,  y >.  |  ph }  =  { z  |  E. x E. y
( z  =  <. x ,  y >.  /\  ph ) }
31, 2eqtri 2191 . . 3  |-  A  =  { z  |  E. x E. y ( z  =  <. x ,  y
>.  /\  ph ) }
4 vex 2733 . . . . . . . 8  |-  x  e. 
_V
5 vex 2733 . . . . . . . 8  |-  y  e. 
_V
64, 5opelvv 4659 . . . . . . 7  |-  <. x ,  y >.  e.  ( _V  X.  _V )
7 eleq1 2233 . . . . . . 7  |-  ( z  =  <. x ,  y
>.  ->  ( z  e.  ( _V  X.  _V ) 
<-> 
<. x ,  y >.  e.  ( _V  X.  _V ) ) )
86, 7mpbiri 167 . . . . . 6  |-  ( z  =  <. x ,  y
>.  ->  z  e.  ( _V  X.  _V )
)
98adantr 274 . . . . 5  |-  ( ( z  =  <. x ,  y >.  /\  ph )  ->  z  e.  ( _V  X.  _V )
)
109exlimivv 1889 . . . 4  |-  ( E. x E. y ( z  =  <. x ,  y >.  /\  ph )  ->  z  e.  ( _V  X.  _V )
)
1110abssi 3222 . . 3  |-  { z  |  E. x E. y ( z  = 
<. x ,  y >.  /\  ph ) }  C_  ( _V  X.  _V )
123, 11eqsstri 3179 . 2  |-  A  C_  ( _V  X.  _V )
13 df-rel 4616 . 2  |-  ( Rel 
A  <->  A  C_  ( _V 
X.  _V ) )
1412, 13mpbir 145 1  |-  Rel  A
Colors of variables: wff set class
Syntax hints:    /\ wa 103    = wceq 1348   E.wex 1485    e. wcel 2141   {cab 2156   _Vcvv 2730    C_ wss 3121   <.cop 3584   {copab 4047    X. cxp 4607   Rel wrel 4614
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4105  ax-pow 4158  ax-pr 4192
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-opab 4049  df-xp 4615  df-rel 4616
This theorem is referenced by:  relopab  4736  mptrel  4737  reli  4738  rele  4739  relcnv  4987  cotr  4990  relco  5107  reloprab  5898  reldmoprab  5935  eqer  6541  ecopover  6607  ecopoverg  6610  relen  6718  reldom  6719  enq0er  7384  aprcl  8552  climrel  11230  brstruct  12412
  Copyright terms: Public domain W3C validator