ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  relopabiv Unicode version

Theorem relopabiv 4845
Description: A class of ordered pairs is a relation. For a version without a disjoint variable condition, see relopabi 4847. (Contributed by BJ, 22-Jul-2023.)
Hypothesis
Ref Expression
relopabiv.1  |-  A  =  { <. x ,  y
>.  |  ph }
Assertion
Ref Expression
relopabiv  |-  Rel  A
Distinct variable group:    x, y
Allowed substitution hints:    ph( x, y)    A( x, y)

Proof of Theorem relopabiv
StepHypRef Expression
1 vex 2802 . . . . . 6  |-  x  e. 
_V
2 vex 2802 . . . . . 6  |-  y  e. 
_V
31, 2pm3.2i 272 . . . . 5  |-  ( x  e.  _V  /\  y  e.  _V )
43a1i 9 . . . 4  |-  ( ph  ->  ( x  e.  _V  /\  y  e.  _V )
)
54ssopab2i 4366 . . 3  |-  { <. x ,  y >.  |  ph }  C_  { <. x ,  y >.  |  ( x  e.  _V  /\  y  e.  _V ) }
6 relopabiv.1 . . 3  |-  A  =  { <. x ,  y
>.  |  ph }
7 df-xp 4725 . . 3  |-  ( _V 
X.  _V )  =  { <. x ,  y >.  |  ( x  e. 
_V  /\  y  e.  _V ) }
85, 6, 73sstr4i 3265 . 2  |-  A  C_  ( _V  X.  _V )
9 df-rel 4726 . 2  |-  ( Rel 
A  <->  A  C_  ( _V 
X.  _V ) )
108, 9mpbir 146 1  |-  Rel  A
Colors of variables: wff set class
Syntax hints:    /\ wa 104    = wceq 1395    e. wcel 2200   _Vcvv 2799    C_ wss 3197   {copab 4144    X. cxp 4717   Rel wrel 4724
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-in 3203  df-ss 3210  df-opab 4146  df-xp 4725  df-rel 4726
This theorem is referenced by:  relopabv  4846  lgsquadlem1  15764  lgsquadlem2  15765
  Copyright terms: Public domain W3C validator