ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resdifcom Unicode version

Theorem resdifcom 4977
Description: Commutative law for restriction and difference. (Contributed by AV, 7-Jun-2021.)
Assertion
Ref Expression
resdifcom  |-  ( ( A  |`  B )  \  C )  =  ( ( A  \  C
)  |`  B )

Proof of Theorem resdifcom
StepHypRef Expression
1 indif1 3418 . 2  |-  ( ( A  \  C )  i^i  ( B  X.  _V ) )  =  ( ( A  i^i  ( B  X.  _V ) ) 
\  C )
2 df-res 4687 . 2  |-  ( ( A  \  C )  |`  B )  =  ( ( A  \  C
)  i^i  ( B  X.  _V ) )
3 df-res 4687 . . 3  |-  ( A  |`  B )  =  ( A  i^i  ( B  X.  _V ) )
43difeq1i 3287 . 2  |-  ( ( A  |`  B )  \  C )  =  ( ( A  i^i  ( B  X.  _V ) ) 
\  C )
51, 2, 43eqtr4ri 2237 1  |-  ( ( A  |`  B )  \  C )  =  ( ( A  \  C
)  |`  B )
Colors of variables: wff set class
Syntax hints:    = wceq 1373   _Vcvv 2772    \ cdif 3163    i^i cin 3165    X. cxp 4673    |` cres 4677
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-rab 2493  df-v 2774  df-dif 3168  df-in 3172  df-res 4687
This theorem is referenced by:  setsfun0  12868
  Copyright terms: Public domain W3C validator