ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resdifcom Unicode version

Theorem resdifcom 4964
Description: Commutative law for restriction and difference. (Contributed by AV, 7-Jun-2021.)
Assertion
Ref Expression
resdifcom  |-  ( ( A  |`  B )  \  C )  =  ( ( A  \  C
)  |`  B )

Proof of Theorem resdifcom
StepHypRef Expression
1 indif1 3408 . 2  |-  ( ( A  \  C )  i^i  ( B  X.  _V ) )  =  ( ( A  i^i  ( B  X.  _V ) ) 
\  C )
2 df-res 4675 . 2  |-  ( ( A  \  C )  |`  B )  =  ( ( A  \  C
)  i^i  ( B  X.  _V ) )
3 df-res 4675 . . 3  |-  ( A  |`  B )  =  ( A  i^i  ( B  X.  _V ) )
43difeq1i 3277 . 2  |-  ( ( A  |`  B )  \  C )  =  ( ( A  i^i  ( B  X.  _V ) ) 
\  C )
51, 2, 43eqtr4ri 2228 1  |-  ( ( A  |`  B )  \  C )  =  ( ( A  \  C
)  |`  B )
Colors of variables: wff set class
Syntax hints:    = wceq 1364   _Vcvv 2763    \ cdif 3154    i^i cin 3156    X. cxp 4661    |` cres 4665
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-rab 2484  df-v 2765  df-dif 3159  df-in 3163  df-res 4675
This theorem is referenced by:  setsfun0  12714
  Copyright terms: Public domain W3C validator