ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resiun1 Unicode version

Theorem resiun1 4928
Description: Distribution of restriction over indexed union. (Contributed by Mario Carneiro, 29-May-2015.)
Assertion
Ref Expression
resiun1  |-  ( U_ x  e.  A  B  |`  C )  =  U_ x  e.  A  ( B  |`  C )
Distinct variable group:    x, C
Allowed substitution hints:    A( x)    B( x)

Proof of Theorem resiun1
StepHypRef Expression
1 iunin2 3952 . 2  |-  U_ x  e.  A  ( ( C  X.  _V )  i^i 
B )  =  ( ( C  X.  _V )  i^i  U_ x  e.  A  B )
2 df-res 4640 . . . . 5  |-  ( B  |`  C )  =  ( B  i^i  ( C  X.  _V ) )
3 incom 3329 . . . . 5  |-  ( B  i^i  ( C  X.  _V ) )  =  ( ( C  X.  _V )  i^i  B )
42, 3eqtri 2198 . . . 4  |-  ( B  |`  C )  =  ( ( C  X.  _V )  i^i  B )
54a1i 9 . . 3  |-  ( x  e.  A  ->  ( B  |`  C )  =  ( ( C  X.  _V )  i^i  B ) )
65iuneq2i 3906 . 2  |-  U_ x  e.  A  ( B  |`  C )  =  U_ x  e.  A  (
( C  X.  _V )  i^i  B )
7 df-res 4640 . . 3  |-  ( U_ x  e.  A  B  |`  C )  =  (
U_ x  e.  A  B  i^i  ( C  X.  _V ) )
8 incom 3329 . . 3  |-  ( U_ x  e.  A  B  i^i  ( C  X.  _V ) )  =  ( ( C  X.  _V )  i^i  U_ x  e.  A  B )
97, 8eqtri 2198 . 2  |-  ( U_ x  e.  A  B  |`  C )  =  ( ( C  X.  _V )  i^i  U_ x  e.  A  B )
101, 6, 93eqtr4ri 2209 1  |-  ( U_ x  e.  A  B  |`  C )  =  U_ x  e.  A  ( B  |`  C )
Colors of variables: wff set class
Syntax hints:    = wceq 1353    e. wcel 2148   _Vcvv 2739    i^i cin 3130   U_ciun 3888    X. cxp 4626    |` cres 4630
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-in 3137  df-ss 3144  df-iun 3890  df-res 4640
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator