Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 3eqtr4ri | Unicode version |
Description: An inference from three chained equalities. (Contributed by NM, 2-Sep-1995.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
Ref | Expression |
---|---|
3eqtr4i.1 | |
3eqtr4i.2 | |
3eqtr4i.3 |
Ref | Expression |
---|---|
3eqtr4ri |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3eqtr4i.3 | . . 3 | |
2 | 3eqtr4i.1 | . . 3 | |
3 | 1, 2 | eqtr4i 2189 | . 2 |
4 | 3eqtr4i.2 | . 2 | |
5 | 3, 4 | eqtr4i 2189 | 1 |
Colors of variables: wff set class |
Syntax hints: wceq 1343 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-4 1498 ax-17 1514 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-cleq 2158 |
This theorem is referenced by: cbvreucsf 3109 dfif6 3522 qdass 3673 tpidm12 3675 unipr 3803 dfdm4 4796 dmun 4811 resres 4896 inres 4901 resdifcom 4902 resiun1 4903 imainrect 5049 coundi 5105 coundir 5106 funopg 5222 offres 6103 mpomptsx 6165 cnvoprab 6202 snec 6562 halfpm6th 9077 numsucc 9361 decbin2 9462 fsumadd 11347 fsum2d 11376 fprodmul 11532 fprodfac 11556 fprodrec 11570 znnen 12331 |
Copyright terms: Public domain | W3C validator |