| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3eqtr4ri | Unicode version | ||
| Description: An inference from three chained equalities. (Contributed by NM, 2-Sep-1995.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
| Ref | Expression |
|---|---|
| 3eqtr4i.1 |
|
| 3eqtr4i.2 |
|
| 3eqtr4i.3 |
|
| Ref | Expression |
|---|---|
| 3eqtr4ri |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3eqtr4i.3 |
. . 3
| |
| 2 | 3eqtr4i.1 |
. . 3
| |
| 3 | 1, 2 | eqtr4i 2253 |
. 2
|
| 4 | 3eqtr4i.2 |
. 2
| |
| 5 | 3, 4 | eqtr4i 2253 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-gen 1495 ax-4 1556 ax-17 1572 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-cleq 2222 |
| This theorem is referenced by: cbvreucsf 3189 dfif6 3604 qdass 3763 tpidm12 3765 unipr 3902 dfdm4 4915 dmun 4930 resres 5017 inres 5022 resdifcom 5023 resiun1 5024 imainrect 5174 coundi 5230 coundir 5231 funopg 5352 offres 6280 mpomptsx 6343 cnvoprab 6380 snec 6743 halfpm6th 9331 numsucc 9617 decbin2 9718 fsumadd 11917 fsum2d 11946 fprodmul 12102 fprodfac 12126 fprodrec 12140 znnen 12969 txswaphmeolem 14994 |
| Copyright terms: Public domain | W3C validator |