| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3eqtr4ri | Unicode version | ||
| Description: An inference from three chained equalities. (Contributed by NM, 2-Sep-1995.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
| Ref | Expression |
|---|---|
| 3eqtr4i.1 |
|
| 3eqtr4i.2 |
|
| 3eqtr4i.3 |
|
| Ref | Expression |
|---|---|
| 3eqtr4ri |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3eqtr4i.3 |
. . 3
| |
| 2 | 3eqtr4i.1 |
. . 3
| |
| 3 | 1, 2 | eqtr4i 2220 |
. 2
|
| 4 | 3eqtr4i.2 |
. 2
| |
| 5 | 3, 4 | eqtr4i 2220 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-4 1524 ax-17 1540 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-cleq 2189 |
| This theorem is referenced by: cbvreucsf 3149 dfif6 3563 qdass 3719 tpidm12 3721 unipr 3853 dfdm4 4858 dmun 4873 resres 4958 inres 4963 resdifcom 4964 resiun1 4965 imainrect 5115 coundi 5171 coundir 5172 funopg 5292 offres 6192 mpomptsx 6255 cnvoprab 6292 snec 6655 halfpm6th 9211 numsucc 9496 decbin2 9597 fsumadd 11571 fsum2d 11600 fprodmul 11756 fprodfac 11780 fprodrec 11794 znnen 12615 txswaphmeolem 14556 |
| Copyright terms: Public domain | W3C validator |