| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3eqtr4ri | Unicode version | ||
| Description: An inference from three chained equalities. (Contributed by NM, 2-Sep-1995.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
| Ref | Expression |
|---|---|
| 3eqtr4i.1 |
|
| 3eqtr4i.2 |
|
| 3eqtr4i.3 |
|
| Ref | Expression |
|---|---|
| 3eqtr4ri |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3eqtr4i.3 |
. . 3
| |
| 2 | 3eqtr4i.1 |
. . 3
| |
| 3 | 1, 2 | eqtr4i 2231 |
. 2
|
| 4 | 3eqtr4i.2 |
. 2
| |
| 5 | 3, 4 | eqtr4i 2231 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 ax-4 1534 ax-17 1550 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-cleq 2200 |
| This theorem is referenced by: cbvreucsf 3166 dfif6 3581 qdass 3740 tpidm12 3742 unipr 3878 dfdm4 4889 dmun 4904 resres 4990 inres 4995 resdifcom 4996 resiun1 4997 imainrect 5147 coundi 5203 coundir 5204 funopg 5324 offres 6243 mpomptsx 6306 cnvoprab 6343 snec 6706 halfpm6th 9292 numsucc 9578 decbin2 9679 fsumadd 11832 fsum2d 11861 fprodmul 12017 fprodfac 12041 fprodrec 12055 znnen 12884 txswaphmeolem 14907 |
| Copyright terms: Public domain | W3C validator |