| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3eqtr4ri | Unicode version | ||
| Description: An inference from three chained equalities. (Contributed by NM, 2-Sep-1995.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
| Ref | Expression |
|---|---|
| 3eqtr4i.1 |
|
| 3eqtr4i.2 |
|
| 3eqtr4i.3 |
|
| Ref | Expression |
|---|---|
| 3eqtr4ri |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3eqtr4i.3 |
. . 3
| |
| 2 | 3eqtr4i.1 |
. . 3
| |
| 3 | 1, 2 | eqtr4i 2229 |
. 2
|
| 4 | 3eqtr4i.2 |
. 2
| |
| 5 | 3, 4 | eqtr4i 2229 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-gen 1472 ax-4 1533 ax-17 1549 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-cleq 2198 |
| This theorem is referenced by: cbvreucsf 3158 dfif6 3573 qdass 3730 tpidm12 3732 unipr 3864 dfdm4 4871 dmun 4886 resres 4972 inres 4977 resdifcom 4978 resiun1 4979 imainrect 5129 coundi 5185 coundir 5186 funopg 5306 offres 6222 mpomptsx 6285 cnvoprab 6322 snec 6685 halfpm6th 9259 numsucc 9545 decbin2 9646 fsumadd 11750 fsum2d 11779 fprodmul 11935 fprodfac 11959 fprodrec 11973 znnen 12802 txswaphmeolem 14825 |
| Copyright terms: Public domain | W3C validator |