| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > resdifcom | GIF version | ||
| Description: Commutative law for restriction and difference. (Contributed by AV, 7-Jun-2021.) | 
| Ref | Expression | 
|---|---|
| resdifcom | ⊢ ((𝐴 ↾ 𝐵) ∖ 𝐶) = ((𝐴 ∖ 𝐶) ↾ 𝐵) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | indif1 3408 | . 2 ⊢ ((𝐴 ∖ 𝐶) ∩ (𝐵 × V)) = ((𝐴 ∩ (𝐵 × V)) ∖ 𝐶) | |
| 2 | df-res 4675 | . 2 ⊢ ((𝐴 ∖ 𝐶) ↾ 𝐵) = ((𝐴 ∖ 𝐶) ∩ (𝐵 × V)) | |
| 3 | df-res 4675 | . . 3 ⊢ (𝐴 ↾ 𝐵) = (𝐴 ∩ (𝐵 × V)) | |
| 4 | 3 | difeq1i 3277 | . 2 ⊢ ((𝐴 ↾ 𝐵) ∖ 𝐶) = ((𝐴 ∩ (𝐵 × V)) ∖ 𝐶) | 
| 5 | 1, 2, 4 | 3eqtr4ri 2228 | 1 ⊢ ((𝐴 ↾ 𝐵) ∖ 𝐶) = ((𝐴 ∖ 𝐶) ↾ 𝐵) | 
| Colors of variables: wff set class | 
| Syntax hints: = wceq 1364 Vcvv 2763 ∖ cdif 3154 ∩ cin 3156 × cxp 4661 ↾ cres 4665 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rab 2484 df-v 2765 df-dif 3159 df-in 3163 df-res 4675 | 
| This theorem is referenced by: setsfun0 12714 | 
| Copyright terms: Public domain | W3C validator |