| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > resdifcom | GIF version | ||
| Description: Commutative law for restriction and difference. (Contributed by AV, 7-Jun-2021.) |
| Ref | Expression |
|---|---|
| resdifcom | ⊢ ((𝐴 ↾ 𝐵) ∖ 𝐶) = ((𝐴 ∖ 𝐶) ↾ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | indif1 3449 | . 2 ⊢ ((𝐴 ∖ 𝐶) ∩ (𝐵 × V)) = ((𝐴 ∩ (𝐵 × V)) ∖ 𝐶) | |
| 2 | df-res 4730 | . 2 ⊢ ((𝐴 ∖ 𝐶) ↾ 𝐵) = ((𝐴 ∖ 𝐶) ∩ (𝐵 × V)) | |
| 3 | df-res 4730 | . . 3 ⊢ (𝐴 ↾ 𝐵) = (𝐴 ∩ (𝐵 × V)) | |
| 4 | 3 | difeq1i 3318 | . 2 ⊢ ((𝐴 ↾ 𝐵) ∖ 𝐶) = ((𝐴 ∩ (𝐵 × V)) ∖ 𝐶) |
| 5 | 1, 2, 4 | 3eqtr4ri 2261 | 1 ⊢ ((𝐴 ↾ 𝐵) ∖ 𝐶) = ((𝐴 ∖ 𝐶) ↾ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1395 Vcvv 2799 ∖ cdif 3194 ∩ cin 3196 × cxp 4716 ↾ cres 4720 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-rab 2517 df-v 2801 df-dif 3199 df-in 3203 df-res 4730 |
| This theorem is referenced by: setsfun0 13063 |
| Copyright terms: Public domain | W3C validator |