| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > resdifcom | GIF version | ||
| Description: Commutative law for restriction and difference. (Contributed by AV, 7-Jun-2021.) |
| Ref | Expression |
|---|---|
| resdifcom | ⊢ ((𝐴 ↾ 𝐵) ∖ 𝐶) = ((𝐴 ∖ 𝐶) ↾ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | indif1 3417 | . 2 ⊢ ((𝐴 ∖ 𝐶) ∩ (𝐵 × V)) = ((𝐴 ∩ (𝐵 × V)) ∖ 𝐶) | |
| 2 | df-res 4685 | . 2 ⊢ ((𝐴 ∖ 𝐶) ↾ 𝐵) = ((𝐴 ∖ 𝐶) ∩ (𝐵 × V)) | |
| 3 | df-res 4685 | . . 3 ⊢ (𝐴 ↾ 𝐵) = (𝐴 ∩ (𝐵 × V)) | |
| 4 | 3 | difeq1i 3286 | . 2 ⊢ ((𝐴 ↾ 𝐵) ∖ 𝐶) = ((𝐴 ∩ (𝐵 × V)) ∖ 𝐶) |
| 5 | 1, 2, 4 | 3eqtr4ri 2236 | 1 ⊢ ((𝐴 ↾ 𝐵) ∖ 𝐶) = ((𝐴 ∖ 𝐶) ↾ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1372 Vcvv 2771 ∖ cdif 3162 ∩ cin 3164 × cxp 4671 ↾ cres 4675 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-rab 2492 df-v 2773 df-dif 3167 df-in 3171 df-res 4685 |
| This theorem is referenced by: setsfun0 12787 |
| Copyright terms: Public domain | W3C validator |