ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  setsfun0 Unicode version

Theorem setsfun0 12034
Description: A structure with replacement without the empty set is a function if the original structure without the empty set is a function. This variant of setsfun 12033 is useful for proofs based on isstruct2r 12009 which requires  Fun  ( F 
\  { (/) } ) for 
F to be an extensible structure. (Contributed by AV, 7-Jun-2021.)
Assertion
Ref Expression
setsfun0  |-  ( ( ( G  e.  V  /\  Fun  ( G  \  { (/) } ) )  /\  ( I  e.  U  /\  E  e.  W ) )  ->  Fun  ( ( G sSet  <. I ,  E >. )  \  { (/) } ) )

Proof of Theorem setsfun0
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 funres 5172 . . . . 5  |-  ( Fun  ( G  \  { (/)
} )  ->  Fun  ( ( G  \  { (/) } )  |`  ( _V  \  dom  { <. I ,  E >. } ) ) )
21ad2antlr 481 . . . 4  |-  ( ( ( G  e.  V  /\  Fun  ( G  \  { (/) } ) )  /\  ( I  e.  U  /\  E  e.  W ) )  ->  Fun  ( ( G  \  { (/) } )  |`  ( _V  \  dom  { <. I ,  E >. } ) ) )
3 funsng 5177 . . . . 5  |-  ( ( I  e.  U  /\  E  e.  W )  ->  Fun  { <. I ,  E >. } )
43adantl 275 . . . 4  |-  ( ( ( G  e.  V  /\  Fun  ( G  \  { (/) } ) )  /\  ( I  e.  U  /\  E  e.  W ) )  ->  Fun  { <. I ,  E >. } )
5 dmres 4848 . . . . . . 7  |-  dom  (
( G  \  { (/)
} )  |`  ( _V  \  dom  { <. I ,  E >. } ) )  =  ( ( _V  \  dom  { <. I ,  E >. } )  i^i  dom  ( G  \  { (/) } ) )
65ineq1i 3278 . . . . . 6  |-  ( dom  ( ( G  \  { (/) } )  |`  ( _V  \  dom  { <. I ,  E >. } ) )  i^i  dom  {
<. I ,  E >. } )  =  ( ( ( _V  \  dom  {
<. I ,  E >. } )  i^i  dom  ( G  \  { (/) } ) )  i^i  dom  { <. I ,  E >. } )
7 in32 3293 . . . . . . 7  |-  ( ( ( _V  \  dom  {
<. I ,  E >. } )  i^i  dom  ( G  \  { (/) } ) )  i^i  dom  { <. I ,  E >. } )  =  ( ( ( _V  \  dom  {
<. I ,  E >. } )  i^i  dom  { <. I ,  E >. } )  i^i  dom  ( G  \  { (/) } ) )
8 incom 3273 . . . . . . . . 9  |-  ( ( _V  \  dom  { <. I ,  E >. } )  i^i  dom  { <. I ,  E >. } )  =  ( dom 
{ <. I ,  E >. }  i^i  ( _V 
\  dom  { <. I ,  E >. } ) )
9 disjdif 3440 . . . . . . . . 9  |-  ( dom 
{ <. I ,  E >. }  i^i  ( _V 
\  dom  { <. I ,  E >. } ) )  =  (/)
108, 9eqtri 2161 . . . . . . . 8  |-  ( ( _V  \  dom  { <. I ,  E >. } )  i^i  dom  { <. I ,  E >. } )  =  (/)
1110ineq1i 3278 . . . . . . 7  |-  ( ( ( _V  \  dom  {
<. I ,  E >. } )  i^i  dom  { <. I ,  E >. } )  i^i  dom  ( G  \  { (/) } ) )  =  ( (/)  i^i 
dom  ( G  \  { (/) } ) )
12 0in 3403 . . . . . . 7  |-  ( (/)  i^i 
dom  ( G  \  { (/) } ) )  =  (/)
137, 11, 123eqtri 2165 . . . . . 6  |-  ( ( ( _V  \  dom  {
<. I ,  E >. } )  i^i  dom  ( G  \  { (/) } ) )  i^i  dom  { <. I ,  E >. } )  =  (/)
146, 13eqtri 2161 . . . . 5  |-  ( dom  ( ( G  \  { (/) } )  |`  ( _V  \  dom  { <. I ,  E >. } ) )  i^i  dom  {
<. I ,  E >. } )  =  (/)
1514a1i 9 . . . 4  |-  ( ( ( G  e.  V  /\  Fun  ( G  \  { (/) } ) )  /\  ( I  e.  U  /\  E  e.  W ) )  -> 
( dom  ( ( G  \  { (/) } )  |`  ( _V  \  dom  {
<. I ,  E >. } ) )  i^i  dom  {
<. I ,  E >. } )  =  (/) )
16 funun 5175 . . . 4  |-  ( ( ( Fun  ( ( G  \  { (/) } )  |`  ( _V  \  dom  { <. I ,  E >. } ) )  /\  Fun  { <. I ,  E >. } )  /\  ( dom  (
( G  \  { (/)
} )  |`  ( _V  \  dom  { <. I ,  E >. } ) )  i^i  dom  { <. I ,  E >. } )  =  (/) )  ->  Fun  ( ( ( G 
\  { (/) } )  |`  ( _V  \  dom  {
<. I ,  E >. } ) )  u.  { <. I ,  E >. } ) )
172, 4, 15, 16syl21anc 1216 . . 3  |-  ( ( ( G  e.  V  /\  Fun  ( G  \  { (/) } ) )  /\  ( I  e.  U  /\  E  e.  W ) )  ->  Fun  ( ( ( G 
\  { (/) } )  |`  ( _V  \  dom  {
<. I ,  E >. } ) )  u.  { <. I ,  E >. } ) )
18 difundir 3334 . . . . 5  |-  ( ( ( G  |`  ( _V  \  dom  { <. I ,  E >. } ) )  u.  { <. I ,  E >. } ) 
\  { (/) } )  =  ( ( ( G  |`  ( _V  \  dom  { <. I ,  E >. } ) ) 
\  { (/) } )  u.  ( { <. I ,  E >. }  \  { (/) } ) )
19 resdifcom 4845 . . . . . . 7  |-  ( ( G  |`  ( _V  \  dom  { <. I ,  E >. } ) ) 
\  { (/) } )  =  ( ( G 
\  { (/) } )  |`  ( _V  \  dom  {
<. I ,  E >. } ) )
2019a1i 9 . . . . . 6  |-  ( ( ( G  e.  V  /\  Fun  ( G  \  { (/) } ) )  /\  ( I  e.  U  /\  E  e.  W ) )  -> 
( ( G  |`  ( _V  \  dom  { <. I ,  E >. } ) )  \  { (/)
} )  =  ( ( G  \  { (/)
} )  |`  ( _V  \  dom  { <. I ,  E >. } ) ) )
21 elex 2700 . . . . . . . . 9  |-  ( I  e.  U  ->  I  e.  _V )
22 elex 2700 . . . . . . . . 9  |-  ( E  e.  W  ->  E  e.  _V )
23 opm 4164 . . . . . . . . . 10  |-  ( E. x  x  e.  <. I ,  E >.  <->  ( I  e.  _V  /\  E  e. 
_V ) )
24 n0r 3381 . . . . . . . . . 10  |-  ( E. x  x  e.  <. I ,  E >.  ->  <. I ,  E >.  =/=  (/) )
2523, 24sylbir 134 . . . . . . . . 9  |-  ( ( I  e.  _V  /\  E  e.  _V )  -> 
<. I ,  E >.  =/=  (/) )
2621, 22, 25syl2an 287 . . . . . . . 8  |-  ( ( I  e.  U  /\  E  e.  W )  -> 
<. I ,  E >.  =/=  (/) )
2726adantl 275 . . . . . . 7  |-  ( ( ( G  e.  V  /\  Fun  ( G  \  { (/) } ) )  /\  ( I  e.  U  /\  E  e.  W ) )  ->  <. I ,  E >.  =/=  (/) )
28 disjsn2 3594 . . . . . . 7  |-  ( <.
I ,  E >.  =/=  (/)  ->  ( { <. I ,  E >. }  i^i  {
(/) } )  =  (/) )
29 disjdif2 3446 . . . . . . 7  |-  ( ( { <. I ,  E >. }  i^i  { (/) } )  =  (/)  ->  ( { <. I ,  E >. }  \  { (/) } )  =  { <. I ,  E >. } )
3027, 28, 293syl 17 . . . . . 6  |-  ( ( ( G  e.  V  /\  Fun  ( G  \  { (/) } ) )  /\  ( I  e.  U  /\  E  e.  W ) )  -> 
( { <. I ,  E >. }  \  { (/)
} )  =  { <. I ,  E >. } )
3120, 30uneq12d 3236 . . . . 5  |-  ( ( ( G  e.  V  /\  Fun  ( G  \  { (/) } ) )  /\  ( I  e.  U  /\  E  e.  W ) )  -> 
( ( ( G  |`  ( _V  \  dom  {
<. I ,  E >. } ) )  \  { (/)
} )  u.  ( { <. I ,  E >. }  \  { (/) } ) )  =  ( ( ( G  \  { (/) } )  |`  ( _V  \  dom  { <. I ,  E >. } ) )  u.  { <. I ,  E >. } ) )
3218, 31syl5eq 2185 . . . 4  |-  ( ( ( G  e.  V  /\  Fun  ( G  \  { (/) } ) )  /\  ( I  e.  U  /\  E  e.  W ) )  -> 
( ( ( G  |`  ( _V  \  dom  {
<. I ,  E >. } ) )  u.  { <. I ,  E >. } )  \  { (/) } )  =  ( ( ( G  \  { (/)
} )  |`  ( _V  \  dom  { <. I ,  E >. } ) )  u.  { <. I ,  E >. } ) )
3332funeqd 5153 . . 3  |-  ( ( ( G  e.  V  /\  Fun  ( G  \  { (/) } ) )  /\  ( I  e.  U  /\  E  e.  W ) )  -> 
( Fun  ( (
( G  |`  ( _V  \  dom  { <. I ,  E >. } ) )  u.  { <. I ,  E >. } ) 
\  { (/) } )  <->  Fun  ( ( ( G 
\  { (/) } )  |`  ( _V  \  dom  {
<. I ,  E >. } ) )  u.  { <. I ,  E >. } ) ) )
3417, 33mpbird 166 . 2  |-  ( ( ( G  e.  V  /\  Fun  ( G  \  { (/) } ) )  /\  ( I  e.  U  /\  E  e.  W ) )  ->  Fun  ( ( ( G  |`  ( _V  \  dom  {
<. I ,  E >. } ) )  u.  { <. I ,  E >. } )  \  { (/) } ) )
35 simpll 519 . . . . 5  |-  ( ( ( G  e.  V  /\  Fun  ( G  \  { (/) } ) )  /\  ( I  e.  U  /\  E  e.  W ) )  ->  G  e.  V )
36 opexg 4158 . . . . . 6  |-  ( ( I  e.  U  /\  E  e.  W )  -> 
<. I ,  E >.  e. 
_V )
3736adantl 275 . . . . 5  |-  ( ( ( G  e.  V  /\  Fun  ( G  \  { (/) } ) )  /\  ( I  e.  U  /\  E  e.  W ) )  ->  <. I ,  E >.  e. 
_V )
38 setsvalg 12028 . . . . 5  |-  ( ( G  e.  V  /\  <.
I ,  E >.  e. 
_V )  ->  ( G sSet  <. I ,  E >. )  =  ( ( G  |`  ( _V  \  dom  { <. I ,  E >. } ) )  u.  { <. I ,  E >. } ) )
3935, 37, 38syl2anc 409 . . . 4  |-  ( ( ( G  e.  V  /\  Fun  ( G  \  { (/) } ) )  /\  ( I  e.  U  /\  E  e.  W ) )  -> 
( G sSet  <. I ,  E >. )  =  ( ( G  |`  ( _V  \  dom  { <. I ,  E >. } ) )  u.  { <. I ,  E >. } ) )
4039difeq1d 3198 . . 3  |-  ( ( ( G  e.  V  /\  Fun  ( G  \  { (/) } ) )  /\  ( I  e.  U  /\  E  e.  W ) )  -> 
( ( G sSet  <. I ,  E >. )  \  { (/) } )  =  ( ( ( G  |`  ( _V  \  dom  {
<. I ,  E >. } ) )  u.  { <. I ,  E >. } )  \  { (/) } ) )
4140funeqd 5153 . 2  |-  ( ( ( G  e.  V  /\  Fun  ( G  \  { (/) } ) )  /\  ( I  e.  U  /\  E  e.  W ) )  -> 
( Fun  ( ( G sSet  <. I ,  E >. )  \  { (/) } )  <->  Fun  ( ( ( G  |`  ( _V  \  dom  { <. I ,  E >. } ) )  u.  { <. I ,  E >. } )  \  { (/) } ) ) )
4234, 41mpbird 166 1  |-  ( ( ( G  e.  V  /\  Fun  ( G  \  { (/) } ) )  /\  ( I  e.  U  /\  E  e.  W ) )  ->  Fun  ( ( G sSet  <. I ,  E >. )  \  { (/) } ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1332   E.wex 1469    e. wcel 1481    =/= wne 2309   _Vcvv 2689    \ cdif 3073    u. cun 3074    i^i cin 3075   (/)c0 3368   {csn 3532   <.cop 3535   dom cdm 4547    |` cres 4549   Fun wfun 5125  (class class class)co 5782   sSet csts 11996
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-ral 2422  df-rex 2423  df-rab 2426  df-v 2691  df-sbc 2914  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-br 3938  df-opab 3998  df-id 4223  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-res 4559  df-iota 5096  df-fun 5133  df-fv 5139  df-ov 5785  df-oprab 5786  df-mpo 5787  df-sets 12005
This theorem is referenced by:  setsn0fun  12035
  Copyright terms: Public domain W3C validator