ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  setsfun0 Unicode version

Theorem setsfun0 12430
Description: A structure with replacement without the empty set is a function if the original structure without the empty set is a function. This variant of setsfun 12429 is useful for proofs based on isstruct2r 12405 which requires  Fun  ( F 
\  { (/) } ) for 
F to be an extensible structure. (Contributed by AV, 7-Jun-2021.)
Assertion
Ref Expression
setsfun0  |-  ( ( ( G  e.  V  /\  Fun  ( G  \  { (/) } ) )  /\  ( I  e.  U  /\  E  e.  W ) )  ->  Fun  ( ( G sSet  <. I ,  E >. )  \  { (/) } ) )

Proof of Theorem setsfun0
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 funres 5229 . . . . 5  |-  ( Fun  ( G  \  { (/)
} )  ->  Fun  ( ( G  \  { (/) } )  |`  ( _V  \  dom  { <. I ,  E >. } ) ) )
21ad2antlr 481 . . . 4  |-  ( ( ( G  e.  V  /\  Fun  ( G  \  { (/) } ) )  /\  ( I  e.  U  /\  E  e.  W ) )  ->  Fun  ( ( G  \  { (/) } )  |`  ( _V  \  dom  { <. I ,  E >. } ) ) )
3 funsng 5234 . . . . 5  |-  ( ( I  e.  U  /\  E  e.  W )  ->  Fun  { <. I ,  E >. } )
43adantl 275 . . . 4  |-  ( ( ( G  e.  V  /\  Fun  ( G  \  { (/) } ) )  /\  ( I  e.  U  /\  E  e.  W ) )  ->  Fun  { <. I ,  E >. } )
5 dmres 4905 . . . . . . 7  |-  dom  (
( G  \  { (/)
} )  |`  ( _V  \  dom  { <. I ,  E >. } ) )  =  ( ( _V  \  dom  { <. I ,  E >. } )  i^i  dom  ( G  \  { (/) } ) )
65ineq1i 3319 . . . . . 6  |-  ( dom  ( ( G  \  { (/) } )  |`  ( _V  \  dom  { <. I ,  E >. } ) )  i^i  dom  {
<. I ,  E >. } )  =  ( ( ( _V  \  dom  {
<. I ,  E >. } )  i^i  dom  ( G  \  { (/) } ) )  i^i  dom  { <. I ,  E >. } )
7 in32 3334 . . . . . . 7  |-  ( ( ( _V  \  dom  {
<. I ,  E >. } )  i^i  dom  ( G  \  { (/) } ) )  i^i  dom  { <. I ,  E >. } )  =  ( ( ( _V  \  dom  {
<. I ,  E >. } )  i^i  dom  { <. I ,  E >. } )  i^i  dom  ( G  \  { (/) } ) )
8 incom 3314 . . . . . . . . 9  |-  ( ( _V  \  dom  { <. I ,  E >. } )  i^i  dom  { <. I ,  E >. } )  =  ( dom 
{ <. I ,  E >. }  i^i  ( _V 
\  dom  { <. I ,  E >. } ) )
9 disjdif 3481 . . . . . . . . 9  |-  ( dom 
{ <. I ,  E >. }  i^i  ( _V 
\  dom  { <. I ,  E >. } ) )  =  (/)
108, 9eqtri 2186 . . . . . . . 8  |-  ( ( _V  \  dom  { <. I ,  E >. } )  i^i  dom  { <. I ,  E >. } )  =  (/)
1110ineq1i 3319 . . . . . . 7  |-  ( ( ( _V  \  dom  {
<. I ,  E >. } )  i^i  dom  { <. I ,  E >. } )  i^i  dom  ( G  \  { (/) } ) )  =  ( (/)  i^i 
dom  ( G  \  { (/) } ) )
12 0in 3444 . . . . . . 7  |-  ( (/)  i^i 
dom  ( G  \  { (/) } ) )  =  (/)
137, 11, 123eqtri 2190 . . . . . 6  |-  ( ( ( _V  \  dom  {
<. I ,  E >. } )  i^i  dom  ( G  \  { (/) } ) )  i^i  dom  { <. I ,  E >. } )  =  (/)
146, 13eqtri 2186 . . . . 5  |-  ( dom  ( ( G  \  { (/) } )  |`  ( _V  \  dom  { <. I ,  E >. } ) )  i^i  dom  {
<. I ,  E >. } )  =  (/)
1514a1i 9 . . . 4  |-  ( ( ( G  e.  V  /\  Fun  ( G  \  { (/) } ) )  /\  ( I  e.  U  /\  E  e.  W ) )  -> 
( dom  ( ( G  \  { (/) } )  |`  ( _V  \  dom  {
<. I ,  E >. } ) )  i^i  dom  {
<. I ,  E >. } )  =  (/) )
16 funun 5232 . . . 4  |-  ( ( ( Fun  ( ( G  \  { (/) } )  |`  ( _V  \  dom  { <. I ,  E >. } ) )  /\  Fun  { <. I ,  E >. } )  /\  ( dom  (
( G  \  { (/)
} )  |`  ( _V  \  dom  { <. I ,  E >. } ) )  i^i  dom  { <. I ,  E >. } )  =  (/) )  ->  Fun  ( ( ( G 
\  { (/) } )  |`  ( _V  \  dom  {
<. I ,  E >. } ) )  u.  { <. I ,  E >. } ) )
172, 4, 15, 16syl21anc 1227 . . 3  |-  ( ( ( G  e.  V  /\  Fun  ( G  \  { (/) } ) )  /\  ( I  e.  U  /\  E  e.  W ) )  ->  Fun  ( ( ( G 
\  { (/) } )  |`  ( _V  \  dom  {
<. I ,  E >. } ) )  u.  { <. I ,  E >. } ) )
18 difundir 3375 . . . . 5  |-  ( ( ( G  |`  ( _V  \  dom  { <. I ,  E >. } ) )  u.  { <. I ,  E >. } ) 
\  { (/) } )  =  ( ( ( G  |`  ( _V  \  dom  { <. I ,  E >. } ) ) 
\  { (/) } )  u.  ( { <. I ,  E >. }  \  { (/) } ) )
19 resdifcom 4902 . . . . . . 7  |-  ( ( G  |`  ( _V  \  dom  { <. I ,  E >. } ) ) 
\  { (/) } )  =  ( ( G 
\  { (/) } )  |`  ( _V  \  dom  {
<. I ,  E >. } ) )
2019a1i 9 . . . . . 6  |-  ( ( ( G  e.  V  /\  Fun  ( G  \  { (/) } ) )  /\  ( I  e.  U  /\  E  e.  W ) )  -> 
( ( G  |`  ( _V  \  dom  { <. I ,  E >. } ) )  \  { (/)
} )  =  ( ( G  \  { (/)
} )  |`  ( _V  \  dom  { <. I ,  E >. } ) ) )
21 elex 2737 . . . . . . . . 9  |-  ( I  e.  U  ->  I  e.  _V )
22 elex 2737 . . . . . . . . 9  |-  ( E  e.  W  ->  E  e.  _V )
23 opm 4212 . . . . . . . . . 10  |-  ( E. x  x  e.  <. I ,  E >.  <->  ( I  e.  _V  /\  E  e. 
_V ) )
24 n0r 3422 . . . . . . . . . 10  |-  ( E. x  x  e.  <. I ,  E >.  ->  <. I ,  E >.  =/=  (/) )
2523, 24sylbir 134 . . . . . . . . 9  |-  ( ( I  e.  _V  /\  E  e.  _V )  -> 
<. I ,  E >.  =/=  (/) )
2621, 22, 25syl2an 287 . . . . . . . 8  |-  ( ( I  e.  U  /\  E  e.  W )  -> 
<. I ,  E >.  =/=  (/) )
2726adantl 275 . . . . . . 7  |-  ( ( ( G  e.  V  /\  Fun  ( G  \  { (/) } ) )  /\  ( I  e.  U  /\  E  e.  W ) )  ->  <. I ,  E >.  =/=  (/) )
28 disjsn2 3639 . . . . . . 7  |-  ( <.
I ,  E >.  =/=  (/)  ->  ( { <. I ,  E >. }  i^i  {
(/) } )  =  (/) )
29 disjdif2 3487 . . . . . . 7  |-  ( ( { <. I ,  E >. }  i^i  { (/) } )  =  (/)  ->  ( { <. I ,  E >. }  \  { (/) } )  =  { <. I ,  E >. } )
3027, 28, 293syl 17 . . . . . 6  |-  ( ( ( G  e.  V  /\  Fun  ( G  \  { (/) } ) )  /\  ( I  e.  U  /\  E  e.  W ) )  -> 
( { <. I ,  E >. }  \  { (/)
} )  =  { <. I ,  E >. } )
3120, 30uneq12d 3277 . . . . 5  |-  ( ( ( G  e.  V  /\  Fun  ( G  \  { (/) } ) )  /\  ( I  e.  U  /\  E  e.  W ) )  -> 
( ( ( G  |`  ( _V  \  dom  {
<. I ,  E >. } ) )  \  { (/)
} )  u.  ( { <. I ,  E >. }  \  { (/) } ) )  =  ( ( ( G  \  { (/) } )  |`  ( _V  \  dom  { <. I ,  E >. } ) )  u.  { <. I ,  E >. } ) )
3218, 31syl5eq 2211 . . . 4  |-  ( ( ( G  e.  V  /\  Fun  ( G  \  { (/) } ) )  /\  ( I  e.  U  /\  E  e.  W ) )  -> 
( ( ( G  |`  ( _V  \  dom  {
<. I ,  E >. } ) )  u.  { <. I ,  E >. } )  \  { (/) } )  =  ( ( ( G  \  { (/)
} )  |`  ( _V  \  dom  { <. I ,  E >. } ) )  u.  { <. I ,  E >. } ) )
3332funeqd 5210 . . 3  |-  ( ( ( G  e.  V  /\  Fun  ( G  \  { (/) } ) )  /\  ( I  e.  U  /\  E  e.  W ) )  -> 
( Fun  ( (
( G  |`  ( _V  \  dom  { <. I ,  E >. } ) )  u.  { <. I ,  E >. } ) 
\  { (/) } )  <->  Fun  ( ( ( G 
\  { (/) } )  |`  ( _V  \  dom  {
<. I ,  E >. } ) )  u.  { <. I ,  E >. } ) ) )
3417, 33mpbird 166 . 2  |-  ( ( ( G  e.  V  /\  Fun  ( G  \  { (/) } ) )  /\  ( I  e.  U  /\  E  e.  W ) )  ->  Fun  ( ( ( G  |`  ( _V  \  dom  {
<. I ,  E >. } ) )  u.  { <. I ,  E >. } )  \  { (/) } ) )
35 simpll 519 . . . . 5  |-  ( ( ( G  e.  V  /\  Fun  ( G  \  { (/) } ) )  /\  ( I  e.  U  /\  E  e.  W ) )  ->  G  e.  V )
36 opexg 4206 . . . . . 6  |-  ( ( I  e.  U  /\  E  e.  W )  -> 
<. I ,  E >.  e. 
_V )
3736adantl 275 . . . . 5  |-  ( ( ( G  e.  V  /\  Fun  ( G  \  { (/) } ) )  /\  ( I  e.  U  /\  E  e.  W ) )  ->  <. I ,  E >.  e. 
_V )
38 setsvalg 12424 . . . . 5  |-  ( ( G  e.  V  /\  <.
I ,  E >.  e. 
_V )  ->  ( G sSet  <. I ,  E >. )  =  ( ( G  |`  ( _V  \  dom  { <. I ,  E >. } ) )  u.  { <. I ,  E >. } ) )
3935, 37, 38syl2anc 409 . . . 4  |-  ( ( ( G  e.  V  /\  Fun  ( G  \  { (/) } ) )  /\  ( I  e.  U  /\  E  e.  W ) )  -> 
( G sSet  <. I ,  E >. )  =  ( ( G  |`  ( _V  \  dom  { <. I ,  E >. } ) )  u.  { <. I ,  E >. } ) )
4039difeq1d 3239 . . 3  |-  ( ( ( G  e.  V  /\  Fun  ( G  \  { (/) } ) )  /\  ( I  e.  U  /\  E  e.  W ) )  -> 
( ( G sSet  <. I ,  E >. )  \  { (/) } )  =  ( ( ( G  |`  ( _V  \  dom  {
<. I ,  E >. } ) )  u.  { <. I ,  E >. } )  \  { (/) } ) )
4140funeqd 5210 . 2  |-  ( ( ( G  e.  V  /\  Fun  ( G  \  { (/) } ) )  /\  ( I  e.  U  /\  E  e.  W ) )  -> 
( Fun  ( ( G sSet  <. I ,  E >. )  \  { (/) } )  <->  Fun  ( ( ( G  |`  ( _V  \  dom  { <. I ,  E >. } ) )  u.  { <. I ,  E >. } )  \  { (/) } ) ) )
4234, 41mpbird 166 1  |-  ( ( ( G  e.  V  /\  Fun  ( G  \  { (/) } ) )  /\  ( I  e.  U  /\  E  e.  W ) )  ->  Fun  ( ( G sSet  <. I ,  E >. )  \  { (/) } ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1343   E.wex 1480    e. wcel 2136    =/= wne 2336   _Vcvv 2726    \ cdif 3113    u. cun 3114    i^i cin 3115   (/)c0 3409   {csn 3576   <.cop 3579   dom cdm 4604    |` cres 4606   Fun wfun 5182  (class class class)co 5842   sSet csts 12392
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-rab 2453  df-v 2728  df-sbc 2952  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-res 4616  df-iota 5153  df-fun 5190  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-sets 12401
This theorem is referenced by:  setsn0fun  12431
  Copyright terms: Public domain W3C validator