Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > setsfun0 | Unicode version |
Description: A structure with replacement without the empty set is a function if the original structure without the empty set is a function. This variant of setsfun 12172 is useful for proofs based on isstruct2r 12148 which requires for to be an extensible structure. (Contributed by AV, 7-Jun-2021.) |
Ref | Expression |
---|---|
setsfun0 | sSet |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funres 5204 | . . . . 5 | |
2 | 1 | ad2antlr 481 | . . . 4 |
3 | funsng 5209 | . . . . 5 | |
4 | 3 | adantl 275 | . . . 4 |
5 | dmres 4880 | . . . . . . 7 | |
6 | 5 | ineq1i 3300 | . . . . . 6 |
7 | in32 3315 | . . . . . . 7 | |
8 | incom 3295 | . . . . . . . . 9 | |
9 | disjdif 3462 | . . . . . . . . 9 | |
10 | 8, 9 | eqtri 2175 | . . . . . . . 8 |
11 | 10 | ineq1i 3300 | . . . . . . 7 |
12 | 0in 3425 | . . . . . . 7 | |
13 | 7, 11, 12 | 3eqtri 2179 | . . . . . 6 |
14 | 6, 13 | eqtri 2175 | . . . . 5 |
15 | 14 | a1i 9 | . . . 4 |
16 | funun 5207 | . . . 4 | |
17 | 2, 4, 15, 16 | syl21anc 1216 | . . 3 |
18 | difundir 3356 | . . . . 5 | |
19 | resdifcom 4877 | . . . . . . 7 | |
20 | 19 | a1i 9 | . . . . . 6 |
21 | elex 2720 | . . . . . . . . 9 | |
22 | elex 2720 | . . . . . . . . 9 | |
23 | opm 4189 | . . . . . . . . . 10 | |
24 | n0r 3403 | . . . . . . . . . 10 | |
25 | 23, 24 | sylbir 134 | . . . . . . . . 9 |
26 | 21, 22, 25 | syl2an 287 | . . . . . . . 8 |
27 | 26 | adantl 275 | . . . . . . 7 |
28 | disjsn2 3618 | . . . . . . 7 | |
29 | disjdif2 3468 | . . . . . . 7 | |
30 | 27, 28, 29 | 3syl 17 | . . . . . 6 |
31 | 20, 30 | uneq12d 3258 | . . . . 5 |
32 | 18, 31 | syl5eq 2199 | . . . 4 |
33 | 32 | funeqd 5185 | . . 3 |
34 | 17, 33 | mpbird 166 | . 2 |
35 | simpll 519 | . . . . 5 | |
36 | opexg 4183 | . . . . . 6 | |
37 | 36 | adantl 275 | . . . . 5 |
38 | setsvalg 12167 | . . . . 5 sSet | |
39 | 35, 37, 38 | syl2anc 409 | . . . 4 sSet |
40 | 39 | difeq1d 3220 | . . 3 sSet |
41 | 40 | funeqd 5185 | . 2 sSet |
42 | 34, 41 | mpbird 166 | 1 sSet |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1332 wex 1469 wcel 2125 wne 2324 cvv 2709 cdif 3095 cun 3096 cin 3097 c0 3390 csn 3556 cop 3559 cdm 4579 cres 4581 wfun 5157 (class class class)co 5814 sSet csts 12135 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-10 1482 ax-11 1483 ax-i12 1484 ax-bndl 1486 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-13 2127 ax-14 2128 ax-ext 2136 ax-sep 4078 ax-pow 4130 ax-pr 4164 ax-un 4388 ax-setind 4490 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1335 df-fal 1338 df-nf 1438 df-sb 1740 df-eu 2006 df-mo 2007 df-clab 2141 df-cleq 2147 df-clel 2150 df-nfc 2285 df-ne 2325 df-ral 2437 df-rex 2438 df-rab 2441 df-v 2711 df-sbc 2934 df-dif 3100 df-un 3102 df-in 3104 df-ss 3111 df-nul 3391 df-pw 3541 df-sn 3562 df-pr 3563 df-op 3565 df-uni 3769 df-br 3962 df-opab 4022 df-id 4248 df-xp 4585 df-rel 4586 df-cnv 4587 df-co 4588 df-dm 4589 df-res 4591 df-iota 5128 df-fun 5165 df-fv 5171 df-ov 5817 df-oprab 5818 df-mpo 5819 df-sets 12144 |
This theorem is referenced by: setsn0fun 12174 |
Copyright terms: Public domain | W3C validator |