ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  setsfun0 Unicode version

Theorem setsfun0 13063
Description: A structure with replacement without the empty set is a function if the original structure without the empty set is a function. This variant of setsfun 13062 is useful for proofs based on isstruct2r 13038 which requires  Fun  ( F 
\  { (/) } ) for 
F to be an extensible structure. (Contributed by AV, 7-Jun-2021.)
Assertion
Ref Expression
setsfun0  |-  ( ( ( G  e.  V  /\  Fun  ( G  \  { (/) } ) )  /\  ( I  e.  U  /\  E  e.  W ) )  ->  Fun  ( ( G sSet  <. I ,  E >. )  \  { (/) } ) )

Proof of Theorem setsfun0
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 funres 5358 . . . . 5  |-  ( Fun  ( G  \  { (/)
} )  ->  Fun  ( ( G  \  { (/) } )  |`  ( _V  \  dom  { <. I ,  E >. } ) ) )
21ad2antlr 489 . . . 4  |-  ( ( ( G  e.  V  /\  Fun  ( G  \  { (/) } ) )  /\  ( I  e.  U  /\  E  e.  W ) )  ->  Fun  ( ( G  \  { (/) } )  |`  ( _V  \  dom  { <. I ,  E >. } ) ) )
3 funsng 5366 . . . . 5  |-  ( ( I  e.  U  /\  E  e.  W )  ->  Fun  { <. I ,  E >. } )
43adantl 277 . . . 4  |-  ( ( ( G  e.  V  /\  Fun  ( G  \  { (/) } ) )  /\  ( I  e.  U  /\  E  e.  W ) )  ->  Fun  { <. I ,  E >. } )
5 dmres 5025 . . . . . . 7  |-  dom  (
( G  \  { (/)
} )  |`  ( _V  \  dom  { <. I ,  E >. } ) )  =  ( ( _V  \  dom  { <. I ,  E >. } )  i^i  dom  ( G  \  { (/) } ) )
65ineq1i 3401 . . . . . 6  |-  ( dom  ( ( G  \  { (/) } )  |`  ( _V  \  dom  { <. I ,  E >. } ) )  i^i  dom  {
<. I ,  E >. } )  =  ( ( ( _V  \  dom  {
<. I ,  E >. } )  i^i  dom  ( G  \  { (/) } ) )  i^i  dom  { <. I ,  E >. } )
7 in32 3416 . . . . . . 7  |-  ( ( ( _V  \  dom  {
<. I ,  E >. } )  i^i  dom  ( G  \  { (/) } ) )  i^i  dom  { <. I ,  E >. } )  =  ( ( ( _V  \  dom  {
<. I ,  E >. } )  i^i  dom  { <. I ,  E >. } )  i^i  dom  ( G  \  { (/) } ) )
8 incom 3396 . . . . . . . . 9  |-  ( ( _V  \  dom  { <. I ,  E >. } )  i^i  dom  { <. I ,  E >. } )  =  ( dom 
{ <. I ,  E >. }  i^i  ( _V 
\  dom  { <. I ,  E >. } ) )
9 disjdif 3564 . . . . . . . . 9  |-  ( dom 
{ <. I ,  E >. }  i^i  ( _V 
\  dom  { <. I ,  E >. } ) )  =  (/)
108, 9eqtri 2250 . . . . . . . 8  |-  ( ( _V  \  dom  { <. I ,  E >. } )  i^i  dom  { <. I ,  E >. } )  =  (/)
1110ineq1i 3401 . . . . . . 7  |-  ( ( ( _V  \  dom  {
<. I ,  E >. } )  i^i  dom  { <. I ,  E >. } )  i^i  dom  ( G  \  { (/) } ) )  =  ( (/)  i^i 
dom  ( G  \  { (/) } ) )
12 0in 3527 . . . . . . 7  |-  ( (/)  i^i 
dom  ( G  \  { (/) } ) )  =  (/)
137, 11, 123eqtri 2254 . . . . . 6  |-  ( ( ( _V  \  dom  {
<. I ,  E >. } )  i^i  dom  ( G  \  { (/) } ) )  i^i  dom  { <. I ,  E >. } )  =  (/)
146, 13eqtri 2250 . . . . 5  |-  ( dom  ( ( G  \  { (/) } )  |`  ( _V  \  dom  { <. I ,  E >. } ) )  i^i  dom  {
<. I ,  E >. } )  =  (/)
1514a1i 9 . . . 4  |-  ( ( ( G  e.  V  /\  Fun  ( G  \  { (/) } ) )  /\  ( I  e.  U  /\  E  e.  W ) )  -> 
( dom  ( ( G  \  { (/) } )  |`  ( _V  \  dom  {
<. I ,  E >. } ) )  i^i  dom  {
<. I ,  E >. } )  =  (/) )
16 funun 5361 . . . 4  |-  ( ( ( Fun  ( ( G  \  { (/) } )  |`  ( _V  \  dom  { <. I ,  E >. } ) )  /\  Fun  { <. I ,  E >. } )  /\  ( dom  (
( G  \  { (/)
} )  |`  ( _V  \  dom  { <. I ,  E >. } ) )  i^i  dom  { <. I ,  E >. } )  =  (/) )  ->  Fun  ( ( ( G 
\  { (/) } )  |`  ( _V  \  dom  {
<. I ,  E >. } ) )  u.  { <. I ,  E >. } ) )
172, 4, 15, 16syl21anc 1270 . . 3  |-  ( ( ( G  e.  V  /\  Fun  ( G  \  { (/) } ) )  /\  ( I  e.  U  /\  E  e.  W ) )  ->  Fun  ( ( ( G 
\  { (/) } )  |`  ( _V  \  dom  {
<. I ,  E >. } ) )  u.  { <. I ,  E >. } ) )
18 difundir 3457 . . . . 5  |-  ( ( ( G  |`  ( _V  \  dom  { <. I ,  E >. } ) )  u.  { <. I ,  E >. } ) 
\  { (/) } )  =  ( ( ( G  |`  ( _V  \  dom  { <. I ,  E >. } ) ) 
\  { (/) } )  u.  ( { <. I ,  E >. }  \  { (/) } ) )
19 resdifcom 5022 . . . . . . 7  |-  ( ( G  |`  ( _V  \  dom  { <. I ,  E >. } ) ) 
\  { (/) } )  =  ( ( G 
\  { (/) } )  |`  ( _V  \  dom  {
<. I ,  E >. } ) )
2019a1i 9 . . . . . 6  |-  ( ( ( G  e.  V  /\  Fun  ( G  \  { (/) } ) )  /\  ( I  e.  U  /\  E  e.  W ) )  -> 
( ( G  |`  ( _V  \  dom  { <. I ,  E >. } ) )  \  { (/)
} )  =  ( ( G  \  { (/)
} )  |`  ( _V  \  dom  { <. I ,  E >. } ) ) )
21 elex 2811 . . . . . . . . 9  |-  ( I  e.  U  ->  I  e.  _V )
22 elex 2811 . . . . . . . . 9  |-  ( E  e.  W  ->  E  e.  _V )
23 opm 4319 . . . . . . . . . 10  |-  ( E. x  x  e.  <. I ,  E >.  <->  ( I  e.  _V  /\  E  e. 
_V ) )
24 n0r 3505 . . . . . . . . . 10  |-  ( E. x  x  e.  <. I ,  E >.  ->  <. I ,  E >.  =/=  (/) )
2523, 24sylbir 135 . . . . . . . . 9  |-  ( ( I  e.  _V  /\  E  e.  _V )  -> 
<. I ,  E >.  =/=  (/) )
2621, 22, 25syl2an 289 . . . . . . . 8  |-  ( ( I  e.  U  /\  E  e.  W )  -> 
<. I ,  E >.  =/=  (/) )
2726adantl 277 . . . . . . 7  |-  ( ( ( G  e.  V  /\  Fun  ( G  \  { (/) } ) )  /\  ( I  e.  U  /\  E  e.  W ) )  ->  <. I ,  E >.  =/=  (/) )
28 disjsn2 3729 . . . . . . 7  |-  ( <.
I ,  E >.  =/=  (/)  ->  ( { <. I ,  E >. }  i^i  {
(/) } )  =  (/) )
29 disjdif2 3570 . . . . . . 7  |-  ( ( { <. I ,  E >. }  i^i  { (/) } )  =  (/)  ->  ( { <. I ,  E >. }  \  { (/) } )  =  { <. I ,  E >. } )
3027, 28, 293syl 17 . . . . . 6  |-  ( ( ( G  e.  V  /\  Fun  ( G  \  { (/) } ) )  /\  ( I  e.  U  /\  E  e.  W ) )  -> 
( { <. I ,  E >. }  \  { (/)
} )  =  { <. I ,  E >. } )
3120, 30uneq12d 3359 . . . . 5  |-  ( ( ( G  e.  V  /\  Fun  ( G  \  { (/) } ) )  /\  ( I  e.  U  /\  E  e.  W ) )  -> 
( ( ( G  |`  ( _V  \  dom  {
<. I ,  E >. } ) )  \  { (/)
} )  u.  ( { <. I ,  E >. }  \  { (/) } ) )  =  ( ( ( G  \  { (/) } )  |`  ( _V  \  dom  { <. I ,  E >. } ) )  u.  { <. I ,  E >. } ) )
3218, 31eqtrid 2274 . . . 4  |-  ( ( ( G  e.  V  /\  Fun  ( G  \  { (/) } ) )  /\  ( I  e.  U  /\  E  e.  W ) )  -> 
( ( ( G  |`  ( _V  \  dom  {
<. I ,  E >. } ) )  u.  { <. I ,  E >. } )  \  { (/) } )  =  ( ( ( G  \  { (/)
} )  |`  ( _V  \  dom  { <. I ,  E >. } ) )  u.  { <. I ,  E >. } ) )
3332funeqd 5339 . . 3  |-  ( ( ( G  e.  V  /\  Fun  ( G  \  { (/) } ) )  /\  ( I  e.  U  /\  E  e.  W ) )  -> 
( Fun  ( (
( G  |`  ( _V  \  dom  { <. I ,  E >. } ) )  u.  { <. I ,  E >. } ) 
\  { (/) } )  <->  Fun  ( ( ( G 
\  { (/) } )  |`  ( _V  \  dom  {
<. I ,  E >. } ) )  u.  { <. I ,  E >. } ) ) )
3417, 33mpbird 167 . 2  |-  ( ( ( G  e.  V  /\  Fun  ( G  \  { (/) } ) )  /\  ( I  e.  U  /\  E  e.  W ) )  ->  Fun  ( ( ( G  |`  ( _V  \  dom  {
<. I ,  E >. } ) )  u.  { <. I ,  E >. } )  \  { (/) } ) )
35 simpll 527 . . . . 5  |-  ( ( ( G  e.  V  /\  Fun  ( G  \  { (/) } ) )  /\  ( I  e.  U  /\  E  e.  W ) )  ->  G  e.  V )
36 opexg 4313 . . . . . 6  |-  ( ( I  e.  U  /\  E  e.  W )  -> 
<. I ,  E >.  e. 
_V )
3736adantl 277 . . . . 5  |-  ( ( ( G  e.  V  /\  Fun  ( G  \  { (/) } ) )  /\  ( I  e.  U  /\  E  e.  W ) )  ->  <. I ,  E >.  e. 
_V )
38 setsvalg 13057 . . . . 5  |-  ( ( G  e.  V  /\  <.
I ,  E >.  e. 
_V )  ->  ( G sSet  <. I ,  E >. )  =  ( ( G  |`  ( _V  \  dom  { <. I ,  E >. } ) )  u.  { <. I ,  E >. } ) )
3935, 37, 38syl2anc 411 . . . 4  |-  ( ( ( G  e.  V  /\  Fun  ( G  \  { (/) } ) )  /\  ( I  e.  U  /\  E  e.  W ) )  -> 
( G sSet  <. I ,  E >. )  =  ( ( G  |`  ( _V  \  dom  { <. I ,  E >. } ) )  u.  { <. I ,  E >. } ) )
4039difeq1d 3321 . . 3  |-  ( ( ( G  e.  V  /\  Fun  ( G  \  { (/) } ) )  /\  ( I  e.  U  /\  E  e.  W ) )  -> 
( ( G sSet  <. I ,  E >. )  \  { (/) } )  =  ( ( ( G  |`  ( _V  \  dom  {
<. I ,  E >. } ) )  u.  { <. I ,  E >. } )  \  { (/) } ) )
4140funeqd 5339 . 2  |-  ( ( ( G  e.  V  /\  Fun  ( G  \  { (/) } ) )  /\  ( I  e.  U  /\  E  e.  W ) )  -> 
( Fun  ( ( G sSet  <. I ,  E >. )  \  { (/) } )  <->  Fun  ( ( ( G  |`  ( _V  \  dom  { <. I ,  E >. } ) )  u.  { <. I ,  E >. } )  \  { (/) } ) ) )
4234, 41mpbird 167 1  |-  ( ( ( G  e.  V  /\  Fun  ( G  \  { (/) } ) )  /\  ( I  e.  U  /\  E  e.  W ) )  ->  Fun  ( ( G sSet  <. I ,  E >. )  \  { (/) } ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1395   E.wex 1538    e. wcel 2200    =/= wne 2400   _Vcvv 2799    \ cdif 3194    u. cun 3195    i^i cin 3196   (/)c0 3491   {csn 3666   <.cop 3669   dom cdm 4718    |` cres 4720   Fun wfun 5311  (class class class)co 6000   sSet csts 13025
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-res 4730  df-iota 5277  df-fun 5319  df-fv 5325  df-ov 6003  df-oprab 6004  df-mpo 6005  df-sets 13034
This theorem is referenced by:  setsn0fun  13064
  Copyright terms: Public domain W3C validator