| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > setsfun0 | Unicode version | ||
| Description: A structure with
replacement without the empty set is a function if the
original structure without the empty set is a function. This variant of
setsfun 13062 is useful for proofs based on isstruct2r 13038 which requires
|
| Ref | Expression |
|---|---|
| setsfun0 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funres 5358 |
. . . . 5
| |
| 2 | 1 | ad2antlr 489 |
. . . 4
|
| 3 | funsng 5366 |
. . . . 5
| |
| 4 | 3 | adantl 277 |
. . . 4
|
| 5 | dmres 5025 |
. . . . . . 7
| |
| 6 | 5 | ineq1i 3401 |
. . . . . 6
|
| 7 | in32 3416 |
. . . . . . 7
| |
| 8 | incom 3396 |
. . . . . . . . 9
| |
| 9 | disjdif 3564 |
. . . . . . . . 9
| |
| 10 | 8, 9 | eqtri 2250 |
. . . . . . . 8
|
| 11 | 10 | ineq1i 3401 |
. . . . . . 7
|
| 12 | 0in 3527 |
. . . . . . 7
| |
| 13 | 7, 11, 12 | 3eqtri 2254 |
. . . . . 6
|
| 14 | 6, 13 | eqtri 2250 |
. . . . 5
|
| 15 | 14 | a1i 9 |
. . . 4
|
| 16 | funun 5361 |
. . . 4
| |
| 17 | 2, 4, 15, 16 | syl21anc 1270 |
. . 3
|
| 18 | difundir 3457 |
. . . . 5
| |
| 19 | resdifcom 5022 |
. . . . . . 7
| |
| 20 | 19 | a1i 9 |
. . . . . 6
|
| 21 | elex 2811 |
. . . . . . . . 9
| |
| 22 | elex 2811 |
. . . . . . . . 9
| |
| 23 | opm 4319 |
. . . . . . . . . 10
| |
| 24 | n0r 3505 |
. . . . . . . . . 10
| |
| 25 | 23, 24 | sylbir 135 |
. . . . . . . . 9
|
| 26 | 21, 22, 25 | syl2an 289 |
. . . . . . . 8
|
| 27 | 26 | adantl 277 |
. . . . . . 7
|
| 28 | disjsn2 3729 |
. . . . . . 7
| |
| 29 | disjdif2 3570 |
. . . . . . 7
| |
| 30 | 27, 28, 29 | 3syl 17 |
. . . . . 6
|
| 31 | 20, 30 | uneq12d 3359 |
. . . . 5
|
| 32 | 18, 31 | eqtrid 2274 |
. . . 4
|
| 33 | 32 | funeqd 5339 |
. . 3
|
| 34 | 17, 33 | mpbird 167 |
. 2
|
| 35 | simpll 527 |
. . . . 5
| |
| 36 | opexg 4313 |
. . . . . 6
| |
| 37 | 36 | adantl 277 |
. . . . 5
|
| 38 | setsvalg 13057 |
. . . . 5
| |
| 39 | 35, 37, 38 | syl2anc 411 |
. . . 4
|
| 40 | 39 | difeq1d 3321 |
. . 3
|
| 41 | 40 | funeqd 5339 |
. 2
|
| 42 | 34, 41 | mpbird 167 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-res 4730 df-iota 5277 df-fun 5319 df-fv 5325 df-ov 6003 df-oprab 6004 df-mpo 6005 df-sets 13034 |
| This theorem is referenced by: setsn0fun 13064 |
| Copyright terms: Public domain | W3C validator |