| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > setsfun0 | Unicode version | ||
| Description: A structure with
replacement without the empty set is a function if the
original structure without the empty set is a function. This variant of
setsfun 12809 is useful for proofs based on isstruct2r 12785 which requires
|
| Ref | Expression |
|---|---|
| setsfun0 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funres 5311 |
. . . . 5
| |
| 2 | 1 | ad2antlr 489 |
. . . 4
|
| 3 | funsng 5319 |
. . . . 5
| |
| 4 | 3 | adantl 277 |
. . . 4
|
| 5 | dmres 4979 |
. . . . . . 7
| |
| 6 | 5 | ineq1i 3369 |
. . . . . 6
|
| 7 | in32 3384 |
. . . . . . 7
| |
| 8 | incom 3364 |
. . . . . . . . 9
| |
| 9 | disjdif 3532 |
. . . . . . . . 9
| |
| 10 | 8, 9 | eqtri 2225 |
. . . . . . . 8
|
| 11 | 10 | ineq1i 3369 |
. . . . . . 7
|
| 12 | 0in 3495 |
. . . . . . 7
| |
| 13 | 7, 11, 12 | 3eqtri 2229 |
. . . . . 6
|
| 14 | 6, 13 | eqtri 2225 |
. . . . 5
|
| 15 | 14 | a1i 9 |
. . . 4
|
| 16 | funun 5314 |
. . . 4
| |
| 17 | 2, 4, 15, 16 | syl21anc 1248 |
. . 3
|
| 18 | difundir 3425 |
. . . . 5
| |
| 19 | resdifcom 4976 |
. . . . . . 7
| |
| 20 | 19 | a1i 9 |
. . . . . 6
|
| 21 | elex 2782 |
. . . . . . . . 9
| |
| 22 | elex 2782 |
. . . . . . . . 9
| |
| 23 | opm 4277 |
. . . . . . . . . 10
| |
| 24 | n0r 3473 |
. . . . . . . . . 10
| |
| 25 | 23, 24 | sylbir 135 |
. . . . . . . . 9
|
| 26 | 21, 22, 25 | syl2an 289 |
. . . . . . . 8
|
| 27 | 26 | adantl 277 |
. . . . . . 7
|
| 28 | disjsn2 3695 |
. . . . . . 7
| |
| 29 | disjdif2 3538 |
. . . . . . 7
| |
| 30 | 27, 28, 29 | 3syl 17 |
. . . . . 6
|
| 31 | 20, 30 | uneq12d 3327 |
. . . . 5
|
| 32 | 18, 31 | eqtrid 2249 |
. . . 4
|
| 33 | 32 | funeqd 5292 |
. . 3
|
| 34 | 17, 33 | mpbird 167 |
. 2
|
| 35 | simpll 527 |
. . . . 5
| |
| 36 | opexg 4271 |
. . . . . 6
| |
| 37 | 36 | adantl 277 |
. . . . 5
|
| 38 | setsvalg 12804 |
. . . . 5
| |
| 39 | 35, 37, 38 | syl2anc 411 |
. . . 4
|
| 40 | 39 | difeq1d 3289 |
. . 3
|
| 41 | 40 | funeqd 5292 |
. 2
|
| 42 | 34, 41 | mpbird 167 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-setind 4584 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-ral 2488 df-rex 2489 df-rab 2492 df-v 2773 df-sbc 2998 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-br 4044 df-opab 4105 df-id 4339 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-res 4686 df-iota 5231 df-fun 5272 df-fv 5278 df-ov 5946 df-oprab 5947 df-mpo 5948 df-sets 12781 |
| This theorem is referenced by: setsn0fun 12811 |
| Copyright terms: Public domain | W3C validator |