ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  setsfun0 Unicode version

Theorem setsfun0 12452
Description: A structure with replacement without the empty set is a function if the original structure without the empty set is a function. This variant of setsfun 12451 is useful for proofs based on isstruct2r 12427 which requires  Fun  ( F 
\  { (/) } ) for 
F to be an extensible structure. (Contributed by AV, 7-Jun-2021.)
Assertion
Ref Expression
setsfun0  |-  ( ( ( G  e.  V  /\  Fun  ( G  \  { (/) } ) )  /\  ( I  e.  U  /\  E  e.  W ) )  ->  Fun  ( ( G sSet  <. I ,  E >. )  \  { (/) } ) )

Proof of Theorem setsfun0
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 funres 5239 . . . . 5  |-  ( Fun  ( G  \  { (/)
} )  ->  Fun  ( ( G  \  { (/) } )  |`  ( _V  \  dom  { <. I ,  E >. } ) ) )
21ad2antlr 486 . . . 4  |-  ( ( ( G  e.  V  /\  Fun  ( G  \  { (/) } ) )  /\  ( I  e.  U  /\  E  e.  W ) )  ->  Fun  ( ( G  \  { (/) } )  |`  ( _V  \  dom  { <. I ,  E >. } ) ) )
3 funsng 5244 . . . . 5  |-  ( ( I  e.  U  /\  E  e.  W )  ->  Fun  { <. I ,  E >. } )
43adantl 275 . . . 4  |-  ( ( ( G  e.  V  /\  Fun  ( G  \  { (/) } ) )  /\  ( I  e.  U  /\  E  e.  W ) )  ->  Fun  { <. I ,  E >. } )
5 dmres 4912 . . . . . . 7  |-  dom  (
( G  \  { (/)
} )  |`  ( _V  \  dom  { <. I ,  E >. } ) )  =  ( ( _V  \  dom  { <. I ,  E >. } )  i^i  dom  ( G  \  { (/) } ) )
65ineq1i 3324 . . . . . 6  |-  ( dom  ( ( G  \  { (/) } )  |`  ( _V  \  dom  { <. I ,  E >. } ) )  i^i  dom  {
<. I ,  E >. } )  =  ( ( ( _V  \  dom  {
<. I ,  E >. } )  i^i  dom  ( G  \  { (/) } ) )  i^i  dom  { <. I ,  E >. } )
7 in32 3339 . . . . . . 7  |-  ( ( ( _V  \  dom  {
<. I ,  E >. } )  i^i  dom  ( G  \  { (/) } ) )  i^i  dom  { <. I ,  E >. } )  =  ( ( ( _V  \  dom  {
<. I ,  E >. } )  i^i  dom  { <. I ,  E >. } )  i^i  dom  ( G  \  { (/) } ) )
8 incom 3319 . . . . . . . . 9  |-  ( ( _V  \  dom  { <. I ,  E >. } )  i^i  dom  { <. I ,  E >. } )  =  ( dom 
{ <. I ,  E >. }  i^i  ( _V 
\  dom  { <. I ,  E >. } ) )
9 disjdif 3487 . . . . . . . . 9  |-  ( dom 
{ <. I ,  E >. }  i^i  ( _V 
\  dom  { <. I ,  E >. } ) )  =  (/)
108, 9eqtri 2191 . . . . . . . 8  |-  ( ( _V  \  dom  { <. I ,  E >. } )  i^i  dom  { <. I ,  E >. } )  =  (/)
1110ineq1i 3324 . . . . . . 7  |-  ( ( ( _V  \  dom  {
<. I ,  E >. } )  i^i  dom  { <. I ,  E >. } )  i^i  dom  ( G  \  { (/) } ) )  =  ( (/)  i^i 
dom  ( G  \  { (/) } ) )
12 0in 3450 . . . . . . 7  |-  ( (/)  i^i 
dom  ( G  \  { (/) } ) )  =  (/)
137, 11, 123eqtri 2195 . . . . . 6  |-  ( ( ( _V  \  dom  {
<. I ,  E >. } )  i^i  dom  ( G  \  { (/) } ) )  i^i  dom  { <. I ,  E >. } )  =  (/)
146, 13eqtri 2191 . . . . 5  |-  ( dom  ( ( G  \  { (/) } )  |`  ( _V  \  dom  { <. I ,  E >. } ) )  i^i  dom  {
<. I ,  E >. } )  =  (/)
1514a1i 9 . . . 4  |-  ( ( ( G  e.  V  /\  Fun  ( G  \  { (/) } ) )  /\  ( I  e.  U  /\  E  e.  W ) )  -> 
( dom  ( ( G  \  { (/) } )  |`  ( _V  \  dom  {
<. I ,  E >. } ) )  i^i  dom  {
<. I ,  E >. } )  =  (/) )
16 funun 5242 . . . 4  |-  ( ( ( Fun  ( ( G  \  { (/) } )  |`  ( _V  \  dom  { <. I ,  E >. } ) )  /\  Fun  { <. I ,  E >. } )  /\  ( dom  (
( G  \  { (/)
} )  |`  ( _V  \  dom  { <. I ,  E >. } ) )  i^i  dom  { <. I ,  E >. } )  =  (/) )  ->  Fun  ( ( ( G 
\  { (/) } )  |`  ( _V  \  dom  {
<. I ,  E >. } ) )  u.  { <. I ,  E >. } ) )
172, 4, 15, 16syl21anc 1232 . . 3  |-  ( ( ( G  e.  V  /\  Fun  ( G  \  { (/) } ) )  /\  ( I  e.  U  /\  E  e.  W ) )  ->  Fun  ( ( ( G 
\  { (/) } )  |`  ( _V  \  dom  {
<. I ,  E >. } ) )  u.  { <. I ,  E >. } ) )
18 difundir 3380 . . . . 5  |-  ( ( ( G  |`  ( _V  \  dom  { <. I ,  E >. } ) )  u.  { <. I ,  E >. } ) 
\  { (/) } )  =  ( ( ( G  |`  ( _V  \  dom  { <. I ,  E >. } ) ) 
\  { (/) } )  u.  ( { <. I ,  E >. }  \  { (/) } ) )
19 resdifcom 4909 . . . . . . 7  |-  ( ( G  |`  ( _V  \  dom  { <. I ,  E >. } ) ) 
\  { (/) } )  =  ( ( G 
\  { (/) } )  |`  ( _V  \  dom  {
<. I ,  E >. } ) )
2019a1i 9 . . . . . 6  |-  ( ( ( G  e.  V  /\  Fun  ( G  \  { (/) } ) )  /\  ( I  e.  U  /\  E  e.  W ) )  -> 
( ( G  |`  ( _V  \  dom  { <. I ,  E >. } ) )  \  { (/)
} )  =  ( ( G  \  { (/)
} )  |`  ( _V  \  dom  { <. I ,  E >. } ) ) )
21 elex 2741 . . . . . . . . 9  |-  ( I  e.  U  ->  I  e.  _V )
22 elex 2741 . . . . . . . . 9  |-  ( E  e.  W  ->  E  e.  _V )
23 opm 4219 . . . . . . . . . 10  |-  ( E. x  x  e.  <. I ,  E >.  <->  ( I  e.  _V  /\  E  e. 
_V ) )
24 n0r 3428 . . . . . . . . . 10  |-  ( E. x  x  e.  <. I ,  E >.  ->  <. I ,  E >.  =/=  (/) )
2523, 24sylbir 134 . . . . . . . . 9  |-  ( ( I  e.  _V  /\  E  e.  _V )  -> 
<. I ,  E >.  =/=  (/) )
2621, 22, 25syl2an 287 . . . . . . . 8  |-  ( ( I  e.  U  /\  E  e.  W )  -> 
<. I ,  E >.  =/=  (/) )
2726adantl 275 . . . . . . 7  |-  ( ( ( G  e.  V  /\  Fun  ( G  \  { (/) } ) )  /\  ( I  e.  U  /\  E  e.  W ) )  ->  <. I ,  E >.  =/=  (/) )
28 disjsn2 3646 . . . . . . 7  |-  ( <.
I ,  E >.  =/=  (/)  ->  ( { <. I ,  E >. }  i^i  {
(/) } )  =  (/) )
29 disjdif2 3493 . . . . . . 7  |-  ( ( { <. I ,  E >. }  i^i  { (/) } )  =  (/)  ->  ( { <. I ,  E >. }  \  { (/) } )  =  { <. I ,  E >. } )
3027, 28, 293syl 17 . . . . . 6  |-  ( ( ( G  e.  V  /\  Fun  ( G  \  { (/) } ) )  /\  ( I  e.  U  /\  E  e.  W ) )  -> 
( { <. I ,  E >. }  \  { (/)
} )  =  { <. I ,  E >. } )
3120, 30uneq12d 3282 . . . . 5  |-  ( ( ( G  e.  V  /\  Fun  ( G  \  { (/) } ) )  /\  ( I  e.  U  /\  E  e.  W ) )  -> 
( ( ( G  |`  ( _V  \  dom  {
<. I ,  E >. } ) )  \  { (/)
} )  u.  ( { <. I ,  E >. }  \  { (/) } ) )  =  ( ( ( G  \  { (/) } )  |`  ( _V  \  dom  { <. I ,  E >. } ) )  u.  { <. I ,  E >. } ) )
3218, 31eqtrid 2215 . . . 4  |-  ( ( ( G  e.  V  /\  Fun  ( G  \  { (/) } ) )  /\  ( I  e.  U  /\  E  e.  W ) )  -> 
( ( ( G  |`  ( _V  \  dom  {
<. I ,  E >. } ) )  u.  { <. I ,  E >. } )  \  { (/) } )  =  ( ( ( G  \  { (/)
} )  |`  ( _V  \  dom  { <. I ,  E >. } ) )  u.  { <. I ,  E >. } ) )
3332funeqd 5220 . . 3  |-  ( ( ( G  e.  V  /\  Fun  ( G  \  { (/) } ) )  /\  ( I  e.  U  /\  E  e.  W ) )  -> 
( Fun  ( (
( G  |`  ( _V  \  dom  { <. I ,  E >. } ) )  u.  { <. I ,  E >. } ) 
\  { (/) } )  <->  Fun  ( ( ( G 
\  { (/) } )  |`  ( _V  \  dom  {
<. I ,  E >. } ) )  u.  { <. I ,  E >. } ) ) )
3417, 33mpbird 166 . 2  |-  ( ( ( G  e.  V  /\  Fun  ( G  \  { (/) } ) )  /\  ( I  e.  U  /\  E  e.  W ) )  ->  Fun  ( ( ( G  |`  ( _V  \  dom  {
<. I ,  E >. } ) )  u.  { <. I ,  E >. } )  \  { (/) } ) )
35 simpll 524 . . . . 5  |-  ( ( ( G  e.  V  /\  Fun  ( G  \  { (/) } ) )  /\  ( I  e.  U  /\  E  e.  W ) )  ->  G  e.  V )
36 opexg 4213 . . . . . 6  |-  ( ( I  e.  U  /\  E  e.  W )  -> 
<. I ,  E >.  e. 
_V )
3736adantl 275 . . . . 5  |-  ( ( ( G  e.  V  /\  Fun  ( G  \  { (/) } ) )  /\  ( I  e.  U  /\  E  e.  W ) )  ->  <. I ,  E >.  e. 
_V )
38 setsvalg 12446 . . . . 5  |-  ( ( G  e.  V  /\  <.
I ,  E >.  e. 
_V )  ->  ( G sSet  <. I ,  E >. )  =  ( ( G  |`  ( _V  \  dom  { <. I ,  E >. } ) )  u.  { <. I ,  E >. } ) )
3935, 37, 38syl2anc 409 . . . 4  |-  ( ( ( G  e.  V  /\  Fun  ( G  \  { (/) } ) )  /\  ( I  e.  U  /\  E  e.  W ) )  -> 
( G sSet  <. I ,  E >. )  =  ( ( G  |`  ( _V  \  dom  { <. I ,  E >. } ) )  u.  { <. I ,  E >. } ) )
4039difeq1d 3244 . . 3  |-  ( ( ( G  e.  V  /\  Fun  ( G  \  { (/) } ) )  /\  ( I  e.  U  /\  E  e.  W ) )  -> 
( ( G sSet  <. I ,  E >. )  \  { (/) } )  =  ( ( ( G  |`  ( _V  \  dom  {
<. I ,  E >. } ) )  u.  { <. I ,  E >. } )  \  { (/) } ) )
4140funeqd 5220 . 2  |-  ( ( ( G  e.  V  /\  Fun  ( G  \  { (/) } ) )  /\  ( I  e.  U  /\  E  e.  W ) )  -> 
( Fun  ( ( G sSet  <. I ,  E >. )  \  { (/) } )  <->  Fun  ( ( ( G  |`  ( _V  \  dom  { <. I ,  E >. } ) )  u.  { <. I ,  E >. } )  \  { (/) } ) ) )
4234, 41mpbird 166 1  |-  ( ( ( G  e.  V  /\  Fun  ( G  \  { (/) } ) )  /\  ( I  e.  U  /\  E  e.  W ) )  ->  Fun  ( ( G sSet  <. I ,  E >. )  \  { (/) } ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1348   E.wex 1485    e. wcel 2141    =/= wne 2340   _Vcvv 2730    \ cdif 3118    u. cun 3119    i^i cin 3120   (/)c0 3414   {csn 3583   <.cop 3586   dom cdm 4611    |` cres 4613   Fun wfun 5192  (class class class)co 5853   sSet csts 12414
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-rab 2457  df-v 2732  df-sbc 2956  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-res 4623  df-iota 5160  df-fun 5200  df-fv 5206  df-ov 5856  df-oprab 5857  df-mpo 5858  df-sets 12423
This theorem is referenced by:  setsn0fun  12453
  Copyright terms: Public domain W3C validator