Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > setsfun0 | Unicode version |
Description: A structure with replacement without the empty set is a function if the original structure without the empty set is a function. This variant of setsfun 12451 is useful for proofs based on isstruct2r 12427 which requires for to be an extensible structure. (Contributed by AV, 7-Jun-2021.) |
Ref | Expression |
---|---|
setsfun0 | sSet |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funres 5239 | . . . . 5 | |
2 | 1 | ad2antlr 486 | . . . 4 |
3 | funsng 5244 | . . . . 5 | |
4 | 3 | adantl 275 | . . . 4 |
5 | dmres 4912 | . . . . . . 7 | |
6 | 5 | ineq1i 3324 | . . . . . 6 |
7 | in32 3339 | . . . . . . 7 | |
8 | incom 3319 | . . . . . . . . 9 | |
9 | disjdif 3487 | . . . . . . . . 9 | |
10 | 8, 9 | eqtri 2191 | . . . . . . . 8 |
11 | 10 | ineq1i 3324 | . . . . . . 7 |
12 | 0in 3450 | . . . . . . 7 | |
13 | 7, 11, 12 | 3eqtri 2195 | . . . . . 6 |
14 | 6, 13 | eqtri 2191 | . . . . 5 |
15 | 14 | a1i 9 | . . . 4 |
16 | funun 5242 | . . . 4 | |
17 | 2, 4, 15, 16 | syl21anc 1232 | . . 3 |
18 | difundir 3380 | . . . . 5 | |
19 | resdifcom 4909 | . . . . . . 7 | |
20 | 19 | a1i 9 | . . . . . 6 |
21 | elex 2741 | . . . . . . . . 9 | |
22 | elex 2741 | . . . . . . . . 9 | |
23 | opm 4219 | . . . . . . . . . 10 | |
24 | n0r 3428 | . . . . . . . . . 10 | |
25 | 23, 24 | sylbir 134 | . . . . . . . . 9 |
26 | 21, 22, 25 | syl2an 287 | . . . . . . . 8 |
27 | 26 | adantl 275 | . . . . . . 7 |
28 | disjsn2 3646 | . . . . . . 7 | |
29 | disjdif2 3493 | . . . . . . 7 | |
30 | 27, 28, 29 | 3syl 17 | . . . . . 6 |
31 | 20, 30 | uneq12d 3282 | . . . . 5 |
32 | 18, 31 | eqtrid 2215 | . . . 4 |
33 | 32 | funeqd 5220 | . . 3 |
34 | 17, 33 | mpbird 166 | . 2 |
35 | simpll 524 | . . . . 5 | |
36 | opexg 4213 | . . . . . 6 | |
37 | 36 | adantl 275 | . . . . 5 |
38 | setsvalg 12446 | . . . . 5 sSet | |
39 | 35, 37, 38 | syl2anc 409 | . . . 4 sSet |
40 | 39 | difeq1d 3244 | . . 3 sSet |
41 | 40 | funeqd 5220 | . 2 sSet |
42 | 34, 41 | mpbird 166 | 1 sSet |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1348 wex 1485 wcel 2141 wne 2340 cvv 2730 cdif 3118 cun 3119 cin 3120 c0 3414 csn 3583 cop 3586 cdm 4611 cres 4613 wfun 5192 (class class class)co 5853 sSet csts 12414 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-res 4623 df-iota 5160 df-fun 5200 df-fv 5206 df-ov 5856 df-oprab 5857 df-mpo 5858 df-sets 12423 |
This theorem is referenced by: setsn0fun 12453 |
Copyright terms: Public domain | W3C validator |