| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > setsfun0 | Unicode version | ||
| Description: A structure with
replacement without the empty set is a function if the
original structure without the empty set is a function. This variant of
setsfun 12942 is useful for proofs based on isstruct2r 12918 which requires
|
| Ref | Expression |
|---|---|
| setsfun0 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funres 5321 |
. . . . 5
| |
| 2 | 1 | ad2antlr 489 |
. . . 4
|
| 3 | funsng 5329 |
. . . . 5
| |
| 4 | 3 | adantl 277 |
. . . 4
|
| 5 | dmres 4989 |
. . . . . . 7
| |
| 6 | 5 | ineq1i 3374 |
. . . . . 6
|
| 7 | in32 3389 |
. . . . . . 7
| |
| 8 | incom 3369 |
. . . . . . . . 9
| |
| 9 | disjdif 3537 |
. . . . . . . . 9
| |
| 10 | 8, 9 | eqtri 2227 |
. . . . . . . 8
|
| 11 | 10 | ineq1i 3374 |
. . . . . . 7
|
| 12 | 0in 3500 |
. . . . . . 7
| |
| 13 | 7, 11, 12 | 3eqtri 2231 |
. . . . . 6
|
| 14 | 6, 13 | eqtri 2227 |
. . . . 5
|
| 15 | 14 | a1i 9 |
. . . 4
|
| 16 | funun 5324 |
. . . 4
| |
| 17 | 2, 4, 15, 16 | syl21anc 1249 |
. . 3
|
| 18 | difundir 3430 |
. . . . 5
| |
| 19 | resdifcom 4986 |
. . . . . . 7
| |
| 20 | 19 | a1i 9 |
. . . . . 6
|
| 21 | elex 2785 |
. . . . . . . . 9
| |
| 22 | elex 2785 |
. . . . . . . . 9
| |
| 23 | opm 4286 |
. . . . . . . . . 10
| |
| 24 | n0r 3478 |
. . . . . . . . . 10
| |
| 25 | 23, 24 | sylbir 135 |
. . . . . . . . 9
|
| 26 | 21, 22, 25 | syl2an 289 |
. . . . . . . 8
|
| 27 | 26 | adantl 277 |
. . . . . . 7
|
| 28 | disjsn2 3701 |
. . . . . . 7
| |
| 29 | disjdif2 3543 |
. . . . . . 7
| |
| 30 | 27, 28, 29 | 3syl 17 |
. . . . . 6
|
| 31 | 20, 30 | uneq12d 3332 |
. . . . 5
|
| 32 | 18, 31 | eqtrid 2251 |
. . . 4
|
| 33 | 32 | funeqd 5302 |
. . 3
|
| 34 | 17, 33 | mpbird 167 |
. 2
|
| 35 | simpll 527 |
. . . . 5
| |
| 36 | opexg 4280 |
. . . . . 6
| |
| 37 | 36 | adantl 277 |
. . . . 5
|
| 38 | setsvalg 12937 |
. . . . 5
| |
| 39 | 35, 37, 38 | syl2anc 411 |
. . . 4
|
| 40 | 39 | difeq1d 3294 |
. . 3
|
| 41 | 40 | funeqd 5302 |
. 2
|
| 42 | 34, 41 | mpbird 167 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-pow 4226 ax-pr 4261 ax-un 4488 ax-setind 4593 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-sbc 3003 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-br 4052 df-opab 4114 df-id 4348 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-res 4695 df-iota 5241 df-fun 5282 df-fv 5288 df-ov 5960 df-oprab 5961 df-mpo 5962 df-sets 12914 |
| This theorem is referenced by: setsn0fun 12944 |
| Copyright terms: Public domain | W3C validator |