| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > setsfun0 | Unicode version | ||
| Description: A structure with
replacement without the empty set is a function if the
original structure without the empty set is a function. This variant of
setsfun 12713 is useful for proofs based on isstruct2r 12689 which requires
|
| Ref | Expression |
|---|---|
| setsfun0 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funres 5299 |
. . . . 5
| |
| 2 | 1 | ad2antlr 489 |
. . . 4
|
| 3 | funsng 5304 |
. . . . 5
| |
| 4 | 3 | adantl 277 |
. . . 4
|
| 5 | dmres 4967 |
. . . . . . 7
| |
| 6 | 5 | ineq1i 3360 |
. . . . . 6
|
| 7 | in32 3375 |
. . . . . . 7
| |
| 8 | incom 3355 |
. . . . . . . . 9
| |
| 9 | disjdif 3523 |
. . . . . . . . 9
| |
| 10 | 8, 9 | eqtri 2217 |
. . . . . . . 8
|
| 11 | 10 | ineq1i 3360 |
. . . . . . 7
|
| 12 | 0in 3486 |
. . . . . . 7
| |
| 13 | 7, 11, 12 | 3eqtri 2221 |
. . . . . 6
|
| 14 | 6, 13 | eqtri 2217 |
. . . . 5
|
| 15 | 14 | a1i 9 |
. . . 4
|
| 16 | funun 5302 |
. . . 4
| |
| 17 | 2, 4, 15, 16 | syl21anc 1248 |
. . 3
|
| 18 | difundir 3416 |
. . . . 5
| |
| 19 | resdifcom 4964 |
. . . . . . 7
| |
| 20 | 19 | a1i 9 |
. . . . . 6
|
| 21 | elex 2774 |
. . . . . . . . 9
| |
| 22 | elex 2774 |
. . . . . . . . 9
| |
| 23 | opm 4267 |
. . . . . . . . . 10
| |
| 24 | n0r 3464 |
. . . . . . . . . 10
| |
| 25 | 23, 24 | sylbir 135 |
. . . . . . . . 9
|
| 26 | 21, 22, 25 | syl2an 289 |
. . . . . . . 8
|
| 27 | 26 | adantl 277 |
. . . . . . 7
|
| 28 | disjsn2 3685 |
. . . . . . 7
| |
| 29 | disjdif2 3529 |
. . . . . . 7
| |
| 30 | 27, 28, 29 | 3syl 17 |
. . . . . 6
|
| 31 | 20, 30 | uneq12d 3318 |
. . . . 5
|
| 32 | 18, 31 | eqtrid 2241 |
. . . 4
|
| 33 | 32 | funeqd 5280 |
. . 3
|
| 34 | 17, 33 | mpbird 167 |
. 2
|
| 35 | simpll 527 |
. . . . 5
| |
| 36 | opexg 4261 |
. . . . . 6
| |
| 37 | 36 | adantl 277 |
. . . . 5
|
| 38 | setsvalg 12708 |
. . . . 5
| |
| 39 | 35, 37, 38 | syl2anc 411 |
. . . 4
|
| 40 | 39 | difeq1d 3280 |
. . 3
|
| 41 | 40 | funeqd 5280 |
. 2
|
| 42 | 34, 41 | mpbird 167 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-res 4675 df-iota 5219 df-fun 5260 df-fv 5266 df-ov 5925 df-oprab 5926 df-mpo 5927 df-sets 12685 |
| This theorem is referenced by: setsn0fun 12715 |
| Copyright terms: Public domain | W3C validator |