Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > setsfun0 | Unicode version |
Description: A structure with replacement without the empty set is a function if the original structure without the empty set is a function. This variant of setsfun 12429 is useful for proofs based on isstruct2r 12405 which requires for to be an extensible structure. (Contributed by AV, 7-Jun-2021.) |
Ref | Expression |
---|---|
setsfun0 | sSet |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funres 5229 | . . . . 5 | |
2 | 1 | ad2antlr 481 | . . . 4 |
3 | funsng 5234 | . . . . 5 | |
4 | 3 | adantl 275 | . . . 4 |
5 | dmres 4905 | . . . . . . 7 | |
6 | 5 | ineq1i 3319 | . . . . . 6 |
7 | in32 3334 | . . . . . . 7 | |
8 | incom 3314 | . . . . . . . . 9 | |
9 | disjdif 3481 | . . . . . . . . 9 | |
10 | 8, 9 | eqtri 2186 | . . . . . . . 8 |
11 | 10 | ineq1i 3319 | . . . . . . 7 |
12 | 0in 3444 | . . . . . . 7 | |
13 | 7, 11, 12 | 3eqtri 2190 | . . . . . 6 |
14 | 6, 13 | eqtri 2186 | . . . . 5 |
15 | 14 | a1i 9 | . . . 4 |
16 | funun 5232 | . . . 4 | |
17 | 2, 4, 15, 16 | syl21anc 1227 | . . 3 |
18 | difundir 3375 | . . . . 5 | |
19 | resdifcom 4902 | . . . . . . 7 | |
20 | 19 | a1i 9 | . . . . . 6 |
21 | elex 2737 | . . . . . . . . 9 | |
22 | elex 2737 | . . . . . . . . 9 | |
23 | opm 4212 | . . . . . . . . . 10 | |
24 | n0r 3422 | . . . . . . . . . 10 | |
25 | 23, 24 | sylbir 134 | . . . . . . . . 9 |
26 | 21, 22, 25 | syl2an 287 | . . . . . . . 8 |
27 | 26 | adantl 275 | . . . . . . 7 |
28 | disjsn2 3639 | . . . . . . 7 | |
29 | disjdif2 3487 | . . . . . . 7 | |
30 | 27, 28, 29 | 3syl 17 | . . . . . 6 |
31 | 20, 30 | uneq12d 3277 | . . . . 5 |
32 | 18, 31 | syl5eq 2211 | . . . 4 |
33 | 32 | funeqd 5210 | . . 3 |
34 | 17, 33 | mpbird 166 | . 2 |
35 | simpll 519 | . . . . 5 | |
36 | opexg 4206 | . . . . . 6 | |
37 | 36 | adantl 275 | . . . . 5 |
38 | setsvalg 12424 | . . . . 5 sSet | |
39 | 35, 37, 38 | syl2anc 409 | . . . 4 sSet |
40 | 39 | difeq1d 3239 | . . 3 sSet |
41 | 40 | funeqd 5210 | . 2 sSet |
42 | 34, 41 | mpbird 166 | 1 sSet |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1343 wex 1480 wcel 2136 wne 2336 cvv 2726 cdif 3113 cun 3114 cin 3115 c0 3409 csn 3576 cop 3579 cdm 4604 cres 4606 wfun 5182 (class class class)co 5842 sSet csts 12392 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-sbc 2952 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-res 4616 df-iota 5153 df-fun 5190 df-fv 5196 df-ov 5845 df-oprab 5846 df-mpo 5847 df-sets 12401 |
This theorem is referenced by: setsn0fun 12431 |
Copyright terms: Public domain | W3C validator |