ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  setsfun0 Unicode version

Theorem setsfun0 12498
Description: A structure with replacement without the empty set is a function if the original structure without the empty set is a function. This variant of setsfun 12497 is useful for proofs based on isstruct2r 12473 which requires  Fun  ( F 
\  { (/) } ) for 
F to be an extensible structure. (Contributed by AV, 7-Jun-2021.)
Assertion
Ref Expression
setsfun0  |-  ( ( ( G  e.  V  /\  Fun  ( G  \  { (/) } ) )  /\  ( I  e.  U  /\  E  e.  W ) )  ->  Fun  ( ( G sSet  <. I ,  E >. )  \  { (/) } ) )

Proof of Theorem setsfun0
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 funres 5258 . . . . 5  |-  ( Fun  ( G  \  { (/)
} )  ->  Fun  ( ( G  \  { (/) } )  |`  ( _V  \  dom  { <. I ,  E >. } ) ) )
21ad2antlr 489 . . . 4  |-  ( ( ( G  e.  V  /\  Fun  ( G  \  { (/) } ) )  /\  ( I  e.  U  /\  E  e.  W ) )  ->  Fun  ( ( G  \  { (/) } )  |`  ( _V  \  dom  { <. I ,  E >. } ) ) )
3 funsng 5263 . . . . 5  |-  ( ( I  e.  U  /\  E  e.  W )  ->  Fun  { <. I ,  E >. } )
43adantl 277 . . . 4  |-  ( ( ( G  e.  V  /\  Fun  ( G  \  { (/) } ) )  /\  ( I  e.  U  /\  E  e.  W ) )  ->  Fun  { <. I ,  E >. } )
5 dmres 4929 . . . . . . 7  |-  dom  (
( G  \  { (/)
} )  |`  ( _V  \  dom  { <. I ,  E >. } ) )  =  ( ( _V  \  dom  { <. I ,  E >. } )  i^i  dom  ( G  \  { (/) } ) )
65ineq1i 3333 . . . . . 6  |-  ( dom  ( ( G  \  { (/) } )  |`  ( _V  \  dom  { <. I ,  E >. } ) )  i^i  dom  {
<. I ,  E >. } )  =  ( ( ( _V  \  dom  {
<. I ,  E >. } )  i^i  dom  ( G  \  { (/) } ) )  i^i  dom  { <. I ,  E >. } )
7 in32 3348 . . . . . . 7  |-  ( ( ( _V  \  dom  {
<. I ,  E >. } )  i^i  dom  ( G  \  { (/) } ) )  i^i  dom  { <. I ,  E >. } )  =  ( ( ( _V  \  dom  {
<. I ,  E >. } )  i^i  dom  { <. I ,  E >. } )  i^i  dom  ( G  \  { (/) } ) )
8 incom 3328 . . . . . . . . 9  |-  ( ( _V  \  dom  { <. I ,  E >. } )  i^i  dom  { <. I ,  E >. } )  =  ( dom 
{ <. I ,  E >. }  i^i  ( _V 
\  dom  { <. I ,  E >. } ) )
9 disjdif 3496 . . . . . . . . 9  |-  ( dom 
{ <. I ,  E >. }  i^i  ( _V 
\  dom  { <. I ,  E >. } ) )  =  (/)
108, 9eqtri 2198 . . . . . . . 8  |-  ( ( _V  \  dom  { <. I ,  E >. } )  i^i  dom  { <. I ,  E >. } )  =  (/)
1110ineq1i 3333 . . . . . . 7  |-  ( ( ( _V  \  dom  {
<. I ,  E >. } )  i^i  dom  { <. I ,  E >. } )  i^i  dom  ( G  \  { (/) } ) )  =  ( (/)  i^i 
dom  ( G  \  { (/) } ) )
12 0in 3459 . . . . . . 7  |-  ( (/)  i^i 
dom  ( G  \  { (/) } ) )  =  (/)
137, 11, 123eqtri 2202 . . . . . 6  |-  ( ( ( _V  \  dom  {
<. I ,  E >. } )  i^i  dom  ( G  \  { (/) } ) )  i^i  dom  { <. I ,  E >. } )  =  (/)
146, 13eqtri 2198 . . . . 5  |-  ( dom  ( ( G  \  { (/) } )  |`  ( _V  \  dom  { <. I ,  E >. } ) )  i^i  dom  {
<. I ,  E >. } )  =  (/)
1514a1i 9 . . . 4  |-  ( ( ( G  e.  V  /\  Fun  ( G  \  { (/) } ) )  /\  ( I  e.  U  /\  E  e.  W ) )  -> 
( dom  ( ( G  \  { (/) } )  |`  ( _V  \  dom  {
<. I ,  E >. } ) )  i^i  dom  {
<. I ,  E >. } )  =  (/) )
16 funun 5261 . . . 4  |-  ( ( ( Fun  ( ( G  \  { (/) } )  |`  ( _V  \  dom  { <. I ,  E >. } ) )  /\  Fun  { <. I ,  E >. } )  /\  ( dom  (
( G  \  { (/)
} )  |`  ( _V  \  dom  { <. I ,  E >. } ) )  i^i  dom  { <. I ,  E >. } )  =  (/) )  ->  Fun  ( ( ( G 
\  { (/) } )  |`  ( _V  \  dom  {
<. I ,  E >. } ) )  u.  { <. I ,  E >. } ) )
172, 4, 15, 16syl21anc 1237 . . 3  |-  ( ( ( G  e.  V  /\  Fun  ( G  \  { (/) } ) )  /\  ( I  e.  U  /\  E  e.  W ) )  ->  Fun  ( ( ( G 
\  { (/) } )  |`  ( _V  \  dom  {
<. I ,  E >. } ) )  u.  { <. I ,  E >. } ) )
18 difundir 3389 . . . . 5  |-  ( ( ( G  |`  ( _V  \  dom  { <. I ,  E >. } ) )  u.  { <. I ,  E >. } ) 
\  { (/) } )  =  ( ( ( G  |`  ( _V  \  dom  { <. I ,  E >. } ) ) 
\  { (/) } )  u.  ( { <. I ,  E >. }  \  { (/) } ) )
19 resdifcom 4926 . . . . . . 7  |-  ( ( G  |`  ( _V  \  dom  { <. I ,  E >. } ) ) 
\  { (/) } )  =  ( ( G 
\  { (/) } )  |`  ( _V  \  dom  {
<. I ,  E >. } ) )
2019a1i 9 . . . . . 6  |-  ( ( ( G  e.  V  /\  Fun  ( G  \  { (/) } ) )  /\  ( I  e.  U  /\  E  e.  W ) )  -> 
( ( G  |`  ( _V  \  dom  { <. I ,  E >. } ) )  \  { (/)
} )  =  ( ( G  \  { (/)
} )  |`  ( _V  \  dom  { <. I ,  E >. } ) ) )
21 elex 2749 . . . . . . . . 9  |-  ( I  e.  U  ->  I  e.  _V )
22 elex 2749 . . . . . . . . 9  |-  ( E  e.  W  ->  E  e.  _V )
23 opm 4235 . . . . . . . . . 10  |-  ( E. x  x  e.  <. I ,  E >.  <->  ( I  e.  _V  /\  E  e. 
_V ) )
24 n0r 3437 . . . . . . . . . 10  |-  ( E. x  x  e.  <. I ,  E >.  ->  <. I ,  E >.  =/=  (/) )
2523, 24sylbir 135 . . . . . . . . 9  |-  ( ( I  e.  _V  /\  E  e.  _V )  -> 
<. I ,  E >.  =/=  (/) )
2621, 22, 25syl2an 289 . . . . . . . 8  |-  ( ( I  e.  U  /\  E  e.  W )  -> 
<. I ,  E >.  =/=  (/) )
2726adantl 277 . . . . . . 7  |-  ( ( ( G  e.  V  /\  Fun  ( G  \  { (/) } ) )  /\  ( I  e.  U  /\  E  e.  W ) )  ->  <. I ,  E >.  =/=  (/) )
28 disjsn2 3656 . . . . . . 7  |-  ( <.
I ,  E >.  =/=  (/)  ->  ( { <. I ,  E >. }  i^i  {
(/) } )  =  (/) )
29 disjdif2 3502 . . . . . . 7  |-  ( ( { <. I ,  E >. }  i^i  { (/) } )  =  (/)  ->  ( { <. I ,  E >. }  \  { (/) } )  =  { <. I ,  E >. } )
3027, 28, 293syl 17 . . . . . 6  |-  ( ( ( G  e.  V  /\  Fun  ( G  \  { (/) } ) )  /\  ( I  e.  U  /\  E  e.  W ) )  -> 
( { <. I ,  E >. }  \  { (/)
} )  =  { <. I ,  E >. } )
3120, 30uneq12d 3291 . . . . 5  |-  ( ( ( G  e.  V  /\  Fun  ( G  \  { (/) } ) )  /\  ( I  e.  U  /\  E  e.  W ) )  -> 
( ( ( G  |`  ( _V  \  dom  {
<. I ,  E >. } ) )  \  { (/)
} )  u.  ( { <. I ,  E >. }  \  { (/) } ) )  =  ( ( ( G  \  { (/) } )  |`  ( _V  \  dom  { <. I ,  E >. } ) )  u.  { <. I ,  E >. } ) )
3218, 31eqtrid 2222 . . . 4  |-  ( ( ( G  e.  V  /\  Fun  ( G  \  { (/) } ) )  /\  ( I  e.  U  /\  E  e.  W ) )  -> 
( ( ( G  |`  ( _V  \  dom  {
<. I ,  E >. } ) )  u.  { <. I ,  E >. } )  \  { (/) } )  =  ( ( ( G  \  { (/)
} )  |`  ( _V  \  dom  { <. I ,  E >. } ) )  u.  { <. I ,  E >. } ) )
3332funeqd 5239 . . 3  |-  ( ( ( G  e.  V  /\  Fun  ( G  \  { (/) } ) )  /\  ( I  e.  U  /\  E  e.  W ) )  -> 
( Fun  ( (
( G  |`  ( _V  \  dom  { <. I ,  E >. } ) )  u.  { <. I ,  E >. } ) 
\  { (/) } )  <->  Fun  ( ( ( G 
\  { (/) } )  |`  ( _V  \  dom  {
<. I ,  E >. } ) )  u.  { <. I ,  E >. } ) ) )
3417, 33mpbird 167 . 2  |-  ( ( ( G  e.  V  /\  Fun  ( G  \  { (/) } ) )  /\  ( I  e.  U  /\  E  e.  W ) )  ->  Fun  ( ( ( G  |`  ( _V  \  dom  {
<. I ,  E >. } ) )  u.  { <. I ,  E >. } )  \  { (/) } ) )
35 simpll 527 . . . . 5  |-  ( ( ( G  e.  V  /\  Fun  ( G  \  { (/) } ) )  /\  ( I  e.  U  /\  E  e.  W ) )  ->  G  e.  V )
36 opexg 4229 . . . . . 6  |-  ( ( I  e.  U  /\  E  e.  W )  -> 
<. I ,  E >.  e. 
_V )
3736adantl 277 . . . . 5  |-  ( ( ( G  e.  V  /\  Fun  ( G  \  { (/) } ) )  /\  ( I  e.  U  /\  E  e.  W ) )  ->  <. I ,  E >.  e. 
_V )
38 setsvalg 12492 . . . . 5  |-  ( ( G  e.  V  /\  <.
I ,  E >.  e. 
_V )  ->  ( G sSet  <. I ,  E >. )  =  ( ( G  |`  ( _V  \  dom  { <. I ,  E >. } ) )  u.  { <. I ,  E >. } ) )
3935, 37, 38syl2anc 411 . . . 4  |-  ( ( ( G  e.  V  /\  Fun  ( G  \  { (/) } ) )  /\  ( I  e.  U  /\  E  e.  W ) )  -> 
( G sSet  <. I ,  E >. )  =  ( ( G  |`  ( _V  \  dom  { <. I ,  E >. } ) )  u.  { <. I ,  E >. } ) )
4039difeq1d 3253 . . 3  |-  ( ( ( G  e.  V  /\  Fun  ( G  \  { (/) } ) )  /\  ( I  e.  U  /\  E  e.  W ) )  -> 
( ( G sSet  <. I ,  E >. )  \  { (/) } )  =  ( ( ( G  |`  ( _V  \  dom  {
<. I ,  E >. } ) )  u.  { <. I ,  E >. } )  \  { (/) } ) )
4140funeqd 5239 . 2  |-  ( ( ( G  e.  V  /\  Fun  ( G  \  { (/) } ) )  /\  ( I  e.  U  /\  E  e.  W ) )  -> 
( Fun  ( ( G sSet  <. I ,  E >. )  \  { (/) } )  <->  Fun  ( ( ( G  |`  ( _V  \  dom  { <. I ,  E >. } ) )  u.  { <. I ,  E >. } )  \  { (/) } ) ) )
4234, 41mpbird 167 1  |-  ( ( ( G  e.  V  /\  Fun  ( G  \  { (/) } ) )  /\  ( I  e.  U  /\  E  e.  W ) )  ->  Fun  ( ( G sSet  <. I ,  E >. )  \  { (/) } ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1353   E.wex 1492    e. wcel 2148    =/= wne 2347   _Vcvv 2738    \ cdif 3127    u. cun 3128    i^i cin 3129   (/)c0 3423   {csn 3593   <.cop 3596   dom cdm 4627    |` cres 4629   Fun wfun 5211  (class class class)co 5875   sSet csts 12460
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4122  ax-pow 4175  ax-pr 4210  ax-un 4434  ax-setind 4537
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2740  df-sbc 2964  df-dif 3132  df-un 3134  df-in 3136  df-ss 3143  df-nul 3424  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-br 4005  df-opab 4066  df-id 4294  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-res 4639  df-iota 5179  df-fun 5219  df-fv 5225  df-ov 5878  df-oprab 5879  df-mpo 5880  df-sets 12469
This theorem is referenced by:  setsn0fun  12499
  Copyright terms: Public domain W3C validator