ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reueq1 Unicode version

Theorem reueq1 2578
Description: Equality theorem for restricted unique existential quantifier. (Contributed by NM, 5-Apr-2004.)
Assertion
Ref Expression
reueq1  |-  ( A  =  B  ->  ( E! x  e.  A  ph  <->  E! x  e.  B  ph ) )
Distinct variable groups:    x, A    x, B
Allowed substitution hint:    ph( x)

Proof of Theorem reueq1
StepHypRef Expression
1 nfcv 2235 . 2  |-  F/_ x A
2 nfcv 2235 . 2  |-  F/_ x B
31, 2reueq1f 2574 1  |-  ( A  =  B  ->  ( E! x  e.  A  ph  <->  E! x  e.  B  ph ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    = wceq 1296   E!wreu 2372
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 668  ax-5 1388  ax-7 1389  ax-gen 1390  ax-ie1 1434  ax-ie2 1435  ax-8 1447  ax-10 1448  ax-11 1449  ax-i12 1450  ax-bndl 1451  ax-4 1452  ax-17 1471  ax-i9 1475  ax-ial 1479  ax-i5r 1480  ax-ext 2077
This theorem depends on definitions:  df-bi 116  df-tru 1299  df-nf 1402  df-sb 1700  df-eu 1958  df-cleq 2088  df-clel 2091  df-nfc 2224  df-reu 2377
This theorem is referenced by:  reueqd  2586
  Copyright terms: Public domain W3C validator