ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reueq1 Unicode version

Theorem reueq1 2667
Description: Equality theorem for restricted unique existential quantifier. (Contributed by NM, 5-Apr-2004.)
Assertion
Ref Expression
reueq1  |-  ( A  =  B  ->  ( E! x  e.  A  ph  <->  E! x  e.  B  ph ) )
Distinct variable groups:    x, A    x, B
Allowed substitution hint:    ph( x)

Proof of Theorem reueq1
StepHypRef Expression
1 nfcv 2312 . 2  |-  F/_ x A
2 nfcv 2312 . 2  |-  F/_ x B
31, 2reueq1f 2663 1  |-  ( A  =  B  ->  ( E! x  e.  A  ph  <->  E! x  e.  B  ph ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    = wceq 1348   E!wreu 2450
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-cleq 2163  df-clel 2166  df-nfc 2301  df-reu 2455
This theorem is referenced by:  reueqd  2675
  Copyright terms: Public domain W3C validator