ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reueq1 GIF version

Theorem reueq1 2704
Description: Equality theorem for restricted unique existential quantifier. (Contributed by NM, 5-Apr-2004.)
Assertion
Ref Expression
reueq1 (𝐴 = 𝐵 → (∃!𝑥𝐴 𝜑 ↔ ∃!𝑥𝐵 𝜑))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem reueq1
StepHypRef Expression
1 nfcv 2348 . 2 𝑥𝐴
2 nfcv 2348 . 2 𝑥𝐵
31, 2reueq1f 2700 1 (𝐴 = 𝐵 → (∃!𝑥𝐴 𝜑 ↔ ∃!𝑥𝐵 𝜑))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1373  ∃!wreu 2486
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-cleq 2198  df-clel 2201  df-nfc 2337  df-reu 2491
This theorem is referenced by:  reueqd  2716  ringideu  13779
  Copyright terms: Public domain W3C validator