ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ringideu Unicode version

Theorem ringideu 13649
Description: The unity element of a ring is unique. (Contributed by NM, 27-Aug-2011.) (Revised by Mario Carneiro, 6-Jan-2015.)
Hypotheses
Ref Expression
ringcl.b  |-  B  =  ( Base `  R
)
ringcl.t  |-  .x.  =  ( .r `  R )
Assertion
Ref Expression
ringideu  |-  ( R  e.  Ring  ->  E! u  e.  B  A. x  e.  B  ( (
u  .x.  x )  =  x  /\  (
x  .x.  u )  =  x ) )
Distinct variable groups:    x, B    x, R, u    u, B    u, R    u,  .x. , x

Proof of Theorem ringideu
StepHypRef Expression
1 eqid 2196 . . . 4  |-  (mulGrp `  R )  =  (mulGrp `  R )
21ringmgp 13634 . . 3  |-  ( R  e.  Ring  ->  (mulGrp `  R )  e.  Mnd )
3 eqid 2196 . . . 4  |-  ( Base `  (mulGrp `  R )
)  =  ( Base `  (mulGrp `  R )
)
4 eqid 2196 . . . 4  |-  ( +g  `  (mulGrp `  R )
)  =  ( +g  `  (mulGrp `  R )
)
53, 4mndideu 13128 . . 3  |-  ( (mulGrp `  R )  e.  Mnd  ->  E! u  e.  (
Base `  (mulGrp `  R
) ) A. x  e.  ( Base `  (mulGrp `  R ) ) ( ( u ( +g  `  (mulGrp `  R )
) x )  =  x  /\  ( x ( +g  `  (mulGrp `  R ) ) u )  =  x ) )
62, 5syl 14 . 2  |-  ( R  e.  Ring  ->  E! u  e.  ( Base `  (mulGrp `  R ) ) A. x  e.  ( Base `  (mulGrp `  R )
) ( ( u ( +g  `  (mulGrp `  R ) ) x )  =  x  /\  ( x ( +g  `  (mulGrp `  R )
) u )  =  x ) )
7 ringcl.b . . . . . 6  |-  B  =  ( Base `  R
)
81, 7mgpbasg 13558 . . . . 5  |-  ( R  e.  Ring  ->  B  =  ( Base `  (mulGrp `  R ) ) )
9 ringcl.t . . . . . . . . 9  |-  .x.  =  ( .r `  R )
101, 9mgpplusgg 13556 . . . . . . . 8  |-  ( R  e.  Ring  ->  .x.  =  ( +g  `  (mulGrp `  R ) ) )
1110oveqd 5942 . . . . . . 7  |-  ( R  e.  Ring  ->  ( u 
.x.  x )  =  ( u ( +g  `  (mulGrp `  R )
) x ) )
1211eqeq1d 2205 . . . . . 6  |-  ( R  e.  Ring  ->  ( ( u  .x.  x )  =  x  <->  ( u
( +g  `  (mulGrp `  R ) ) x )  =  x ) )
1310oveqd 5942 . . . . . . 7  |-  ( R  e.  Ring  ->  ( x 
.x.  u )  =  ( x ( +g  `  (mulGrp `  R )
) u ) )
1413eqeq1d 2205 . . . . . 6  |-  ( R  e.  Ring  ->  ( ( x  .x.  u )  =  x  <->  ( x
( +g  `  (mulGrp `  R ) ) u )  =  x ) )
1512, 14anbi12d 473 . . . . 5  |-  ( R  e.  Ring  ->  ( ( ( u  .x.  x
)  =  x  /\  ( x  .x.  u )  =  x )  <->  ( (
u ( +g  `  (mulGrp `  R ) ) x )  =  x  /\  ( x ( +g  `  (mulGrp `  R )
) u )  =  x ) ) )
168, 15raleqbidv 2709 . . . 4  |-  ( R  e.  Ring  ->  ( A. x  e.  B  (
( u  .x.  x
)  =  x  /\  ( x  .x.  u )  =  x )  <->  A. x  e.  ( Base `  (mulGrp `  R ) ) ( ( u ( +g  `  (mulGrp `  R )
) x )  =  x  /\  ( x ( +g  `  (mulGrp `  R ) ) u )  =  x ) ) )
1716reubidv 2681 . . 3  |-  ( R  e.  Ring  ->  ( E! u  e.  B  A. x  e.  B  (
( u  .x.  x
)  =  x  /\  ( x  .x.  u )  =  x )  <->  E! u  e.  B  A. x  e.  ( Base `  (mulGrp `  R ) ) ( ( u ( +g  `  (mulGrp `  R )
) x )  =  x  /\  ( x ( +g  `  (mulGrp `  R ) ) u )  =  x ) ) )
18 reueq1 2695 . . . 4  |-  ( B  =  ( Base `  (mulGrp `  R ) )  -> 
( E! u  e.  B  A. x  e.  ( Base `  (mulGrp `  R ) ) ( ( u ( +g  `  (mulGrp `  R )
) x )  =  x  /\  ( x ( +g  `  (mulGrp `  R ) ) u )  =  x )  <-> 
E! u  e.  (
Base `  (mulGrp `  R
) ) A. x  e.  ( Base `  (mulGrp `  R ) ) ( ( u ( +g  `  (mulGrp `  R )
) x )  =  x  /\  ( x ( +g  `  (mulGrp `  R ) ) u )  =  x ) ) )
198, 18syl 14 . . 3  |-  ( R  e.  Ring  ->  ( E! u  e.  B  A. x  e.  ( Base `  (mulGrp `  R )
) ( ( u ( +g  `  (mulGrp `  R ) ) x )  =  x  /\  ( x ( +g  `  (mulGrp `  R )
) u )  =  x )  <->  E! u  e.  ( Base `  (mulGrp `  R ) ) A. x  e.  ( Base `  (mulGrp `  R )
) ( ( u ( +g  `  (mulGrp `  R ) ) x )  =  x  /\  ( x ( +g  `  (mulGrp `  R )
) u )  =  x ) ) )
2017, 19bitrd 188 . 2  |-  ( R  e.  Ring  ->  ( E! u  e.  B  A. x  e.  B  (
( u  .x.  x
)  =  x  /\  ( x  .x.  u )  =  x )  <->  E! u  e.  ( Base `  (mulGrp `  R ) ) A. x  e.  ( Base `  (mulGrp `  R )
) ( ( u ( +g  `  (mulGrp `  R ) ) x )  =  x  /\  ( x ( +g  `  (mulGrp `  R )
) u )  =  x ) ) )
216, 20mpbird 167 1  |-  ( R  e.  Ring  ->  E! u  e.  B  A. x  e.  B  ( (
u  .x.  x )  =  x  /\  (
x  .x.  u )  =  x ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2167   A.wral 2475   E!wreu 2477   ` cfv 5259  (class class class)co 5925   Basecbs 12703   +g cplusg 12780   .rcmulr 12781   Mndcmnd 13118  mulGrpcmgp 13552   Ringcrg 13628
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-addcom 7996  ax-addass 7998  ax-i2m1 8001  ax-0lt1 8002  ax-0id 8004  ax-rnegex 8005  ax-pre-ltirr 8008  ax-pre-ltadd 8012
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-iota 5220  df-fun 5261  df-fn 5262  df-fv 5267  df-ov 5928  df-oprab 5929  df-mpo 5930  df-pnf 8080  df-mnf 8081  df-ltxr 8083  df-inn 9008  df-2 9066  df-3 9067  df-ndx 12706  df-slot 12707  df-base 12709  df-sets 12710  df-plusg 12793  df-mulr 12794  df-mgm 13058  df-sgrp 13104  df-mnd 13119  df-mgp 13553  df-ring 13630
This theorem is referenced by:  isringid  13657
  Copyright terms: Public domain W3C validator