ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ringideu Unicode version

Theorem ringideu 13516
Description: The unity element of a ring is unique. (Contributed by NM, 27-Aug-2011.) (Revised by Mario Carneiro, 6-Jan-2015.)
Hypotheses
Ref Expression
ringcl.b  |-  B  =  ( Base `  R
)
ringcl.t  |-  .x.  =  ( .r `  R )
Assertion
Ref Expression
ringideu  |-  ( R  e.  Ring  ->  E! u  e.  B  A. x  e.  B  ( (
u  .x.  x )  =  x  /\  (
x  .x.  u )  =  x ) )
Distinct variable groups:    x, B    x, R, u    u, B    u, R    u,  .x. , x

Proof of Theorem ringideu
StepHypRef Expression
1 eqid 2193 . . . 4  |-  (mulGrp `  R )  =  (mulGrp `  R )
21ringmgp 13501 . . 3  |-  ( R  e.  Ring  ->  (mulGrp `  R )  e.  Mnd )
3 eqid 2193 . . . 4  |-  ( Base `  (mulGrp `  R )
)  =  ( Base `  (mulGrp `  R )
)
4 eqid 2193 . . . 4  |-  ( +g  `  (mulGrp `  R )
)  =  ( +g  `  (mulGrp `  R )
)
53, 4mndideu 13010 . . 3  |-  ( (mulGrp `  R )  e.  Mnd  ->  E! u  e.  (
Base `  (mulGrp `  R
) ) A. x  e.  ( Base `  (mulGrp `  R ) ) ( ( u ( +g  `  (mulGrp `  R )
) x )  =  x  /\  ( x ( +g  `  (mulGrp `  R ) ) u )  =  x ) )
62, 5syl 14 . 2  |-  ( R  e.  Ring  ->  E! u  e.  ( Base `  (mulGrp `  R ) ) A. x  e.  ( Base `  (mulGrp `  R )
) ( ( u ( +g  `  (mulGrp `  R ) ) x )  =  x  /\  ( x ( +g  `  (mulGrp `  R )
) u )  =  x ) )
7 ringcl.b . . . . . 6  |-  B  =  ( Base `  R
)
81, 7mgpbasg 13425 . . . . 5  |-  ( R  e.  Ring  ->  B  =  ( Base `  (mulGrp `  R ) ) )
9 ringcl.t . . . . . . . . 9  |-  .x.  =  ( .r `  R )
101, 9mgpplusgg 13423 . . . . . . . 8  |-  ( R  e.  Ring  ->  .x.  =  ( +g  `  (mulGrp `  R ) ) )
1110oveqd 5936 . . . . . . 7  |-  ( R  e.  Ring  ->  ( u 
.x.  x )  =  ( u ( +g  `  (mulGrp `  R )
) x ) )
1211eqeq1d 2202 . . . . . 6  |-  ( R  e.  Ring  ->  ( ( u  .x.  x )  =  x  <->  ( u
( +g  `  (mulGrp `  R ) ) x )  =  x ) )
1310oveqd 5936 . . . . . . 7  |-  ( R  e.  Ring  ->  ( x 
.x.  u )  =  ( x ( +g  `  (mulGrp `  R )
) u ) )
1413eqeq1d 2202 . . . . . 6  |-  ( R  e.  Ring  ->  ( ( x  .x.  u )  =  x  <->  ( x
( +g  `  (mulGrp `  R ) ) u )  =  x ) )
1512, 14anbi12d 473 . . . . 5  |-  ( R  e.  Ring  ->  ( ( ( u  .x.  x
)  =  x  /\  ( x  .x.  u )  =  x )  <->  ( (
u ( +g  `  (mulGrp `  R ) ) x )  =  x  /\  ( x ( +g  `  (mulGrp `  R )
) u )  =  x ) ) )
168, 15raleqbidv 2706 . . . 4  |-  ( R  e.  Ring  ->  ( A. x  e.  B  (
( u  .x.  x
)  =  x  /\  ( x  .x.  u )  =  x )  <->  A. x  e.  ( Base `  (mulGrp `  R ) ) ( ( u ( +g  `  (mulGrp `  R )
) x )  =  x  /\  ( x ( +g  `  (mulGrp `  R ) ) u )  =  x ) ) )
1716reubidv 2678 . . 3  |-  ( R  e.  Ring  ->  ( E! u  e.  B  A. x  e.  B  (
( u  .x.  x
)  =  x  /\  ( x  .x.  u )  =  x )  <->  E! u  e.  B  A. x  e.  ( Base `  (mulGrp `  R ) ) ( ( u ( +g  `  (mulGrp `  R )
) x )  =  x  /\  ( x ( +g  `  (mulGrp `  R ) ) u )  =  x ) ) )
18 reueq1 2692 . . . 4  |-  ( B  =  ( Base `  (mulGrp `  R ) )  -> 
( E! u  e.  B  A. x  e.  ( Base `  (mulGrp `  R ) ) ( ( u ( +g  `  (mulGrp `  R )
) x )  =  x  /\  ( x ( +g  `  (mulGrp `  R ) ) u )  =  x )  <-> 
E! u  e.  (
Base `  (mulGrp `  R
) ) A. x  e.  ( Base `  (mulGrp `  R ) ) ( ( u ( +g  `  (mulGrp `  R )
) x )  =  x  /\  ( x ( +g  `  (mulGrp `  R ) ) u )  =  x ) ) )
198, 18syl 14 . . 3  |-  ( R  e.  Ring  ->  ( E! u  e.  B  A. x  e.  ( Base `  (mulGrp `  R )
) ( ( u ( +g  `  (mulGrp `  R ) ) x )  =  x  /\  ( x ( +g  `  (mulGrp `  R )
) u )  =  x )  <->  E! u  e.  ( Base `  (mulGrp `  R ) ) A. x  e.  ( Base `  (mulGrp `  R )
) ( ( u ( +g  `  (mulGrp `  R ) ) x )  =  x  /\  ( x ( +g  `  (mulGrp `  R )
) u )  =  x ) ) )
2017, 19bitrd 188 . 2  |-  ( R  e.  Ring  ->  ( E! u  e.  B  A. x  e.  B  (
( u  .x.  x
)  =  x  /\  ( x  .x.  u )  =  x )  <->  E! u  e.  ( Base `  (mulGrp `  R ) ) A. x  e.  ( Base `  (mulGrp `  R )
) ( ( u ( +g  `  (mulGrp `  R ) ) x )  =  x  /\  ( x ( +g  `  (mulGrp `  R )
) u )  =  x ) ) )
216, 20mpbird 167 1  |-  ( R  e.  Ring  ->  E! u  e.  B  A. x  e.  B  ( (
u  .x.  x )  =  x  /\  (
x  .x.  u )  =  x ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2164   A.wral 2472   E!wreu 2474   ` cfv 5255  (class class class)co 5919   Basecbs 12621   +g cplusg 12698   .rcmulr 12699   Mndcmnd 13000  mulGrpcmgp 13419   Ringcrg 13495
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-addcom 7974  ax-addass 7976  ax-i2m1 7979  ax-0lt1 7980  ax-0id 7982  ax-rnegex 7983  ax-pre-ltirr 7986  ax-pre-ltadd 7990
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-iota 5216  df-fun 5257  df-fn 5258  df-fv 5263  df-ov 5922  df-oprab 5923  df-mpo 5924  df-pnf 8058  df-mnf 8059  df-ltxr 8061  df-inn 8985  df-2 9043  df-3 9044  df-ndx 12624  df-slot 12625  df-base 12627  df-sets 12628  df-plusg 12711  df-mulr 12712  df-mgm 12942  df-sgrp 12988  df-mnd 13001  df-mgp 13420  df-ring 13497
This theorem is referenced by:  isringid  13524
  Copyright terms: Public domain W3C validator