Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  reuv GIF version

Theorem reuv 2677
 Description: A unique existential quantifier restricted to the universe is unrestricted. (Contributed by NM, 1-Nov-2010.)
Assertion
Ref Expression
reuv (∃!𝑥 ∈ V 𝜑 ↔ ∃!𝑥𝜑)

Proof of Theorem reuv
StepHypRef Expression
1 df-reu 2398 . 2 (∃!𝑥 ∈ V 𝜑 ↔ ∃!𝑥(𝑥 ∈ V ∧ 𝜑))
2 vex 2661 . . . 4 𝑥 ∈ V
32biantrur 299 . . 3 (𝜑 ↔ (𝑥 ∈ V ∧ 𝜑))
43eubii 1984 . 2 (∃!𝑥𝜑 ↔ ∃!𝑥(𝑥 ∈ V ∧ 𝜑))
51, 4bitr4i 186 1 (∃!𝑥 ∈ V 𝜑 ↔ ∃!𝑥𝜑)
 Colors of variables: wff set class Syntax hints:   ∧ wa 103   ↔ wb 104   ∈ wcel 1463  ∃!weu 1975  ∃!wreu 2393  Vcvv 2658 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1406  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-4 1470  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-ext 2097 This theorem depends on definitions:  df-bi 116  df-tru 1317  df-nf 1420  df-sb 1719  df-eu 1978  df-clab 2102  df-cleq 2108  df-clel 2111  df-reu 2398  df-v 2660 This theorem is referenced by:  euen1  6662  updjud  6933
 Copyright terms: Public domain W3C validator