Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > reuv | GIF version |
Description: A unique existential quantifier restricted to the universe is unrestricted. (Contributed by NM, 1-Nov-2010.) |
Ref | Expression |
---|---|
reuv | ⊢ (∃!𝑥 ∈ V 𝜑 ↔ ∃!𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-reu 2460 | . 2 ⊢ (∃!𝑥 ∈ V 𝜑 ↔ ∃!𝑥(𝑥 ∈ V ∧ 𝜑)) | |
2 | vex 2738 | . . . 4 ⊢ 𝑥 ∈ V | |
3 | 2 | biantrur 303 | . . 3 ⊢ (𝜑 ↔ (𝑥 ∈ V ∧ 𝜑)) |
4 | 3 | eubii 2033 | . 2 ⊢ (∃!𝑥𝜑 ↔ ∃!𝑥(𝑥 ∈ V ∧ 𝜑)) |
5 | 1, 4 | bitr4i 187 | 1 ⊢ (∃!𝑥 ∈ V 𝜑 ↔ ∃!𝑥𝜑) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 ↔ wb 105 ∃!weu 2024 ∈ wcel 2146 ∃!wreu 2455 Vcvv 2735 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1445 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1459 df-sb 1761 df-eu 2027 df-clab 2162 df-cleq 2168 df-clel 2171 df-reu 2460 df-v 2737 |
This theorem is referenced by: euen1 6792 updjud 7071 |
Copyright terms: Public domain | W3C validator |