ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexv Unicode version

Theorem rexv 2757
Description: An existential quantifier restricted to the universe is unrestricted. (Contributed by NM, 26-Mar-2004.)
Assertion
Ref Expression
rexv  |-  ( E. x  e.  _V  ph  <->  E. x ph )

Proof of Theorem rexv
StepHypRef Expression
1 df-rex 2461 . 2  |-  ( E. x  e.  _V  ph  <->  E. x ( x  e. 
_V  /\  ph ) )
2 vex 2742 . . . 4  |-  x  e. 
_V
32biantrur 303 . . 3  |-  ( ph  <->  ( x  e.  _V  /\  ph ) )
43exbii 1605 . 2  |-  ( E. x ph  <->  E. x
( x  e.  _V  /\ 
ph ) )
51, 4bitr4i 187 1  |-  ( E. x  e.  _V  ph  <->  E. x ph )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105   E.wex 1492    e. wcel 2148   E.wrex 2456   _Vcvv 2739
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1447  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-rex 2461  df-v 2741
This theorem is referenced by:  rexcom4  2762  spesbc  3050  abnex  4449  dfco2  5130  dfco2a  5131
  Copyright terms: Public domain W3C validator