| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rexv | Unicode version | ||
| Description: An existential quantifier restricted to the universe is unrestricted. (Contributed by NM, 26-Mar-2004.) |
| Ref | Expression |
|---|---|
| rexv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rex 2490 |
. 2
| |
| 2 | vex 2775 |
. . . 4
| |
| 3 | 2 | biantrur 303 |
. . 3
|
| 4 | 3 | exbii 1628 |
. 2
|
| 5 | 1, 4 | bitr4i 187 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-rex 2490 df-v 2774 |
| This theorem is referenced by: rexcom4 2795 spesbc 3084 abnex 4494 dfco2 5182 dfco2a 5183 finacn 7316 |
| Copyright terms: Public domain | W3C validator |