| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rexcom4b | GIF version | ||
| Description: Specialized existential commutation lemma. (Contributed by Jeff Madsen, 1-Jun-2011.) |
| Ref | Expression |
|---|---|
| rexcom4b.1 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| rexcom4b | ⊢ (∃𝑥∃𝑦 ∈ 𝐴 (𝜑 ∧ 𝑥 = 𝐵) ↔ ∃𝑦 ∈ 𝐴 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexcom4a 2797 | . 2 ⊢ (∃𝑥∃𝑦 ∈ 𝐴 (𝜑 ∧ 𝑥 = 𝐵) ↔ ∃𝑦 ∈ 𝐴 (𝜑 ∧ ∃𝑥 𝑥 = 𝐵)) | |
| 2 | rexcom4b.1 | . . . . 5 ⊢ 𝐵 ∈ V | |
| 3 | 2 | isseti 2781 | . . . 4 ⊢ ∃𝑥 𝑥 = 𝐵 |
| 4 | 3 | biantru 302 | . . 3 ⊢ (𝜑 ↔ (𝜑 ∧ ∃𝑥 𝑥 = 𝐵)) |
| 5 | 4 | rexbii 2514 | . 2 ⊢ (∃𝑦 ∈ 𝐴 𝜑 ↔ ∃𝑦 ∈ 𝐴 (𝜑 ∧ ∃𝑥 𝑥 = 𝐵)) |
| 6 | 1, 5 | bitr4i 187 | 1 ⊢ (∃𝑥∃𝑦 ∈ 𝐴 (𝜑 ∧ 𝑥 = 𝐵) ↔ ∃𝑦 ∈ 𝐴 𝜑) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 = wceq 1373 ∃wex 1516 ∈ wcel 2177 ∃wrex 2486 Vcvv 2773 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-rex 2491 df-v 2775 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |