ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexcom4b GIF version

Theorem rexcom4b 2714
Description: Specialized existential commutation lemma. (Contributed by Jeff Madsen, 1-Jun-2011.)
Hypothesis
Ref Expression
rexcom4b.1 𝐵 ∈ V
Assertion
Ref Expression
rexcom4b (∃𝑥𝑦𝐴 (𝜑𝑥 = 𝐵) ↔ ∃𝑦𝐴 𝜑)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑦   𝜑,𝑥   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑦)   𝐴(𝑦)   𝐵(𝑦)

Proof of Theorem rexcom4b
StepHypRef Expression
1 rexcom4a 2713 . 2 (∃𝑥𝑦𝐴 (𝜑𝑥 = 𝐵) ↔ ∃𝑦𝐴 (𝜑 ∧ ∃𝑥 𝑥 = 𝐵))
2 rexcom4b.1 . . . . 5 𝐵 ∈ V
32isseti 2697 . . . 4 𝑥 𝑥 = 𝐵
43biantru 300 . . 3 (𝜑 ↔ (𝜑 ∧ ∃𝑥 𝑥 = 𝐵))
54rexbii 2445 . 2 (∃𝑦𝐴 𝜑 ↔ ∃𝑦𝐴 (𝜑 ∧ ∃𝑥 𝑥 = 𝐵))
61, 5bitr4i 186 1 (∃𝑥𝑦𝐴 (𝜑𝑥 = 𝐵) ↔ ∃𝑦𝐴 𝜑)
Colors of variables: wff set class
Syntax hints:  wa 103  wb 104   = wceq 1332  wex 1469  wcel 1481  wrex 2418  Vcvv 2689
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122
This theorem depends on definitions:  df-bi 116  df-tru 1335  df-nf 1438  df-sb 1737  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-rex 2423  df-v 2691
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator