ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  snssb Unicode version

Theorem snssb 3766
Description: Characterization of the inclusion of a singleton in a class. (Contributed by BJ, 1-Jan-2025.)
Assertion
Ref Expression
snssb  |-  ( { A }  C_  B  <->  ( A  e.  _V  ->  A  e.  B ) )

Proof of Theorem snssb
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 ssalel 3181 . 2  |-  ( { A }  C_  B  <->  A. x ( x  e. 
{ A }  ->  x  e.  B ) )
2 velsn 3650 . . . 4  |-  ( x  e.  { A }  <->  x  =  A )
32imbi1i 238 . . 3  |-  ( ( x  e.  { A }  ->  x  e.  B
)  <->  ( x  =  A  ->  x  e.  B ) )
43albii 1493 . 2  |-  ( A. x ( x  e. 
{ A }  ->  x  e.  B )  <->  A. x
( x  =  A  ->  x  e.  B
) )
5 eleq1 2268 . . . . 5  |-  ( x  =  A  ->  (
x  e.  B  <->  A  e.  B ) )
65pm5.74i 180 . . . 4  |-  ( ( x  =  A  ->  x  e.  B )  <->  ( x  =  A  ->  A  e.  B )
)
76albii 1493 . . 3  |-  ( A. x ( x  =  A  ->  x  e.  B )  <->  A. x
( x  =  A  ->  A  e.  B
) )
8 19.23v 1906 . . 3  |-  ( A. x ( x  =  A  ->  A  e.  B )  <->  ( E. x  x  =  A  ->  A  e.  B ) )
9 isset 2778 . . . . 5  |-  ( A  e.  _V  <->  E. x  x  =  A )
109bicomi 132 . . . 4  |-  ( E. x  x  =  A  <-> 
A  e.  _V )
1110imbi1i 238 . . 3  |-  ( ( E. x  x  =  A  ->  A  e.  B )  <->  ( A  e.  _V  ->  A  e.  B ) )
127, 8, 113bitri 206 . 2  |-  ( A. x ( x  =  A  ->  x  e.  B )  <->  ( A  e.  _V  ->  A  e.  B ) )
131, 4, 123bitri 206 1  |-  ( { A }  C_  B  <->  ( A  e.  _V  ->  A  e.  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105   A.wal 1371    = wceq 1373   E.wex 1515    e. wcel 2176   _Vcvv 2772    C_ wss 3166   {csn 3633
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-v 2774  df-in 3172  df-ss 3179  df-sn 3639
This theorem is referenced by:  snssg  3767
  Copyright terms: Public domain W3C validator