| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > snssb | Unicode version | ||
| Description: Characterization of the inclusion of a singleton in a class. (Contributed by BJ, 1-Jan-2025.) |
| Ref | Expression |
|---|---|
| snssb |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfss2 3172 |
. 2
| |
| 2 | velsn 3639 |
. . . 4
| |
| 3 | 2 | imbi1i 238 |
. . 3
|
| 4 | 3 | albii 1484 |
. 2
|
| 5 | eleq1 2259 |
. . . . 5
| |
| 6 | 5 | pm5.74i 180 |
. . . 4
|
| 7 | 6 | albii 1484 |
. . 3
|
| 8 | 19.23v 1897 |
. . 3
| |
| 9 | isset 2769 |
. . . . 5
| |
| 10 | 9 | bicomi 132 |
. . . 4
|
| 11 | 10 | imbi1i 238 |
. . 3
|
| 12 | 7, 8, 11 | 3bitri 206 |
. 2
|
| 13 | 1, 4, 12 | 3bitri 206 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-in 3163 df-ss 3170 df-sn 3628 |
| This theorem is referenced by: snssg 3756 |
| Copyright terms: Public domain | W3C validator |