ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ss2iun Unicode version

Theorem ss2iun 3956
Description: Subclass theorem for indexed union. (Contributed by NM, 26-Nov-2003.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
Assertion
Ref Expression
ss2iun  |-  ( A. x  e.  A  B  C_  C  ->  U_ x  e.  A  B  C_  U_ x  e.  A  C )

Proof of Theorem ss2iun
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 ssel 3195 . . . . 5  |-  ( B 
C_  C  ->  (
y  e.  B  -> 
y  e.  C ) )
21ralimi 2571 . . . 4  |-  ( A. x  e.  A  B  C_  C  ->  A. x  e.  A  ( y  e.  B  ->  y  e.  C ) )
3 rexim 2602 . . . 4  |-  ( A. x  e.  A  (
y  e.  B  -> 
y  e.  C )  ->  ( E. x  e.  A  y  e.  B  ->  E. x  e.  A  y  e.  C )
)
42, 3syl 14 . . 3  |-  ( A. x  e.  A  B  C_  C  ->  ( E. x  e.  A  y  e.  B  ->  E. x  e.  A  y  e.  C ) )
5 eliun 3945 . . 3  |-  ( y  e.  U_ x  e.  A  B  <->  E. x  e.  A  y  e.  B )
6 eliun 3945 . . 3  |-  ( y  e.  U_ x  e.  A  C  <->  E. x  e.  A  y  e.  C )
74, 5, 63imtr4g 205 . 2  |-  ( A. x  e.  A  B  C_  C  ->  ( y  e.  U_ x  e.  A  B  ->  y  e.  U_ x  e.  A  C
) )
87ssrdv 3207 1  |-  ( A. x  e.  A  B  C_  C  ->  U_ x  e.  A  B  C_  U_ x  e.  A  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2178   A.wral 2486   E.wrex 2487    C_ wss 3174   U_ciun 3941
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-in 3180  df-ss 3187  df-iun 3943
This theorem is referenced by:  iuneq2  3957  abnexg  4511  imasaddvallemg  13262  dvfvalap  15268
  Copyright terms: Public domain W3C validator