| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ss2iun | Unicode version | ||
| Description: Subclass theorem for indexed union. (Contributed by NM, 26-Nov-2003.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
| Ref | Expression |
|---|---|
| ss2iun |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssel 3177 |
. . . . 5
| |
| 2 | 1 | ralimi 2560 |
. . . 4
|
| 3 | rexim 2591 |
. . . 4
| |
| 4 | 2, 3 | syl 14 |
. . 3
|
| 5 | eliun 3920 |
. . 3
| |
| 6 | eliun 3920 |
. . 3
| |
| 7 | 4, 5, 6 | 3imtr4g 205 |
. 2
|
| 8 | 7 | ssrdv 3189 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-in 3163 df-ss 3170 df-iun 3918 |
| This theorem is referenced by: iuneq2 3932 abnexg 4481 imasaddvallemg 12958 dvfvalap 14917 |
| Copyright terms: Public domain | W3C validator |