ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ss2iun Unicode version

Theorem ss2iun 3980
Description: Subclass theorem for indexed union. (Contributed by NM, 26-Nov-2003.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
Assertion
Ref Expression
ss2iun  |-  ( A. x  e.  A  B  C_  C  ->  U_ x  e.  A  B  C_  U_ x  e.  A  C )

Proof of Theorem ss2iun
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 ssel 3218 . . . . 5  |-  ( B 
C_  C  ->  (
y  e.  B  -> 
y  e.  C ) )
21ralimi 2593 . . . 4  |-  ( A. x  e.  A  B  C_  C  ->  A. x  e.  A  ( y  e.  B  ->  y  e.  C ) )
3 rexim 2624 . . . 4  |-  ( A. x  e.  A  (
y  e.  B  -> 
y  e.  C )  ->  ( E. x  e.  A  y  e.  B  ->  E. x  e.  A  y  e.  C )
)
42, 3syl 14 . . 3  |-  ( A. x  e.  A  B  C_  C  ->  ( E. x  e.  A  y  e.  B  ->  E. x  e.  A  y  e.  C ) )
5 eliun 3969 . . 3  |-  ( y  e.  U_ x  e.  A  B  <->  E. x  e.  A  y  e.  B )
6 eliun 3969 . . 3  |-  ( y  e.  U_ x  e.  A  C  <->  E. x  e.  A  y  e.  C )
74, 5, 63imtr4g 205 . 2  |-  ( A. x  e.  A  B  C_  C  ->  ( y  e.  U_ x  e.  A  B  ->  y  e.  U_ x  e.  A  C
) )
87ssrdv 3230 1  |-  ( A. x  e.  A  B  C_  C  ->  U_ x  e.  A  B  C_  U_ x  e.  A  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2200   A.wral 2508   E.wrex 2509    C_ wss 3197   U_ciun 3965
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-in 3203  df-ss 3210  df-iun 3967
This theorem is referenced by:  iuneq2  3981  abnexg  4537  imasaddvallemg  13348  dvfvalap  15355
  Copyright terms: Public domain W3C validator