ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ss2iun Unicode version

Theorem ss2iun 3864
Description: Subclass theorem for indexed union. (Contributed by NM, 26-Nov-2003.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
Assertion
Ref Expression
ss2iun  |-  ( A. x  e.  A  B  C_  C  ->  U_ x  e.  A  B  C_  U_ x  e.  A  C )

Proof of Theorem ss2iun
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 ssel 3122 . . . . 5  |-  ( B 
C_  C  ->  (
y  e.  B  -> 
y  e.  C ) )
21ralimi 2520 . . . 4  |-  ( A. x  e.  A  B  C_  C  ->  A. x  e.  A  ( y  e.  B  ->  y  e.  C ) )
3 rexim 2551 . . . 4  |-  ( A. x  e.  A  (
y  e.  B  -> 
y  e.  C )  ->  ( E. x  e.  A  y  e.  B  ->  E. x  e.  A  y  e.  C )
)
42, 3syl 14 . . 3  |-  ( A. x  e.  A  B  C_  C  ->  ( E. x  e.  A  y  e.  B  ->  E. x  e.  A  y  e.  C ) )
5 eliun 3853 . . 3  |-  ( y  e.  U_ x  e.  A  B  <->  E. x  e.  A  y  e.  B )
6 eliun 3853 . . 3  |-  ( y  e.  U_ x  e.  A  C  <->  E. x  e.  A  y  e.  C )
74, 5, 63imtr4g 204 . 2  |-  ( A. x  e.  A  B  C_  C  ->  ( y  e.  U_ x  e.  A  B  ->  y  e.  U_ x  e.  A  C
) )
87ssrdv 3134 1  |-  ( A. x  e.  A  B  C_  C  ->  U_ x  e.  A  B  C_  U_ x  e.  A  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2128   A.wral 2435   E.wrex 2436    C_ wss 3102   U_ciun 3849
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2139
This theorem depends on definitions:  df-bi 116  df-tru 1338  df-nf 1441  df-sb 1743  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ral 2440  df-rex 2441  df-v 2714  df-in 3108  df-ss 3115  df-iun 3851
This theorem is referenced by:  iuneq2  3865  abnexg  4406  dvfvalap  13050
  Copyright terms: Public domain W3C validator