ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  chfnrn Unicode version

Theorem chfnrn 5714
Description: The range of a choice function (a function that chooses an element from each member of its domain) is included in the union of its domain. (Contributed by NM, 31-Aug-1999.)
Assertion
Ref Expression
chfnrn  |-  ( ( F  Fn  A  /\  A. x  e.  A  ( F `  x )  e.  x )  ->  ran  F  C_  U. A )
Distinct variable groups:    x, A    x, F

Proof of Theorem chfnrn
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 fvelrnb 5649 . . . . 5  |-  ( F  Fn  A  ->  (
y  e.  ran  F  <->  E. x  e.  A  ( F `  x )  =  y ) )
21biimpd 144 . . . 4  |-  ( F  Fn  A  ->  (
y  e.  ran  F  ->  E. x  e.  A  ( F `  x )  =  y ) )
3 eleq1 2270 . . . . . . 7  |-  ( ( F `  x )  =  y  ->  (
( F `  x
)  e.  x  <->  y  e.  x ) )
43biimpcd 159 . . . . . 6  |-  ( ( F `  x )  e.  x  ->  (
( F `  x
)  =  y  -> 
y  e.  x ) )
54ralimi 2571 . . . . 5  |-  ( A. x  e.  A  ( F `  x )  e.  x  ->  A. x  e.  A  ( ( F `  x )  =  y  ->  y  e.  x ) )
6 rexim 2602 . . . . 5  |-  ( A. x  e.  A  (
( F `  x
)  =  y  -> 
y  e.  x )  ->  ( E. x  e.  A  ( F `  x )  =  y  ->  E. x  e.  A  y  e.  x )
)
75, 6syl 14 . . . 4  |-  ( A. x  e.  A  ( F `  x )  e.  x  ->  ( E. x  e.  A  ( F `  x )  =  y  ->  E. x  e.  A  y  e.  x ) )
82, 7sylan9 409 . . 3  |-  ( ( F  Fn  A  /\  A. x  e.  A  ( F `  x )  e.  x )  -> 
( y  e.  ran  F  ->  E. x  e.  A  y  e.  x )
)
9 eluni2 3868 . . 3  |-  ( y  e.  U. A  <->  E. x  e.  A  y  e.  x )
108, 9imbitrrdi 162 . 2  |-  ( ( F  Fn  A  /\  A. x  e.  A  ( F `  x )  e.  x )  -> 
( y  e.  ran  F  ->  y  e.  U. A ) )
1110ssrdv 3207 1  |-  ( ( F  Fn  A  /\  A. x  e.  A  ( F `  x )  e.  x )  ->  ran  F  C_  U. A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2178   A.wral 2486   E.wrex 2487    C_ wss 3174   U.cuni 3864   ran crn 4694    Fn wfn 5285   ` cfv 5290
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-sbc 3006  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-iota 5251  df-fun 5292  df-fn 5293  df-fv 5298
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator