ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  chfnrn Unicode version

Theorem chfnrn 5596
Description: The range of a choice function (a function that chooses an element from each member of its domain) is included in the union of its domain. (Contributed by NM, 31-Aug-1999.)
Assertion
Ref Expression
chfnrn  |-  ( ( F  Fn  A  /\  A. x  e.  A  ( F `  x )  e.  x )  ->  ran  F  C_  U. A )
Distinct variable groups:    x, A    x, F

Proof of Theorem chfnrn
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 fvelrnb 5534 . . . . 5  |-  ( F  Fn  A  ->  (
y  e.  ran  F  <->  E. x  e.  A  ( F `  x )  =  y ) )
21biimpd 143 . . . 4  |-  ( F  Fn  A  ->  (
y  e.  ran  F  ->  E. x  e.  A  ( F `  x )  =  y ) )
3 eleq1 2229 . . . . . . 7  |-  ( ( F `  x )  =  y  ->  (
( F `  x
)  e.  x  <->  y  e.  x ) )
43biimpcd 158 . . . . . 6  |-  ( ( F `  x )  e.  x  ->  (
( F `  x
)  =  y  -> 
y  e.  x ) )
54ralimi 2529 . . . . 5  |-  ( A. x  e.  A  ( F `  x )  e.  x  ->  A. x  e.  A  ( ( F `  x )  =  y  ->  y  e.  x ) )
6 rexim 2560 . . . . 5  |-  ( A. x  e.  A  (
( F `  x
)  =  y  -> 
y  e.  x )  ->  ( E. x  e.  A  ( F `  x )  =  y  ->  E. x  e.  A  y  e.  x )
)
75, 6syl 14 . . . 4  |-  ( A. x  e.  A  ( F `  x )  e.  x  ->  ( E. x  e.  A  ( F `  x )  =  y  ->  E. x  e.  A  y  e.  x ) )
82, 7sylan9 407 . . 3  |-  ( ( F  Fn  A  /\  A. x  e.  A  ( F `  x )  e.  x )  -> 
( y  e.  ran  F  ->  E. x  e.  A  y  e.  x )
)
9 eluni2 3793 . . 3  |-  ( y  e.  U. A  <->  E. x  e.  A  y  e.  x )
108, 9syl6ibr 161 . 2  |-  ( ( F  Fn  A  /\  A. x  e.  A  ( F `  x )  e.  x )  -> 
( y  e.  ran  F  ->  y  e.  U. A ) )
1110ssrdv 3148 1  |-  ( ( F  Fn  A  /\  A. x  e.  A  ( F `  x )  e.  x )  ->  ran  F  C_  U. A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1343    e. wcel 2136   A.wral 2444   E.wrex 2445    C_ wss 3116   U.cuni 3789   ran crn 4605    Fn wfn 5183   ` cfv 5188
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-sbc 2952  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-iota 5153  df-fun 5190  df-fn 5191  df-fv 5196
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator