ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  chfnrn Unicode version

Theorem chfnrn 5746
Description: The range of a choice function (a function that chooses an element from each member of its domain) is included in the union of its domain. (Contributed by NM, 31-Aug-1999.)
Assertion
Ref Expression
chfnrn  |-  ( ( F  Fn  A  /\  A. x  e.  A  ( F `  x )  e.  x )  ->  ran  F  C_  U. A )
Distinct variable groups:    x, A    x, F

Proof of Theorem chfnrn
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 fvelrnb 5681 . . . . 5  |-  ( F  Fn  A  ->  (
y  e.  ran  F  <->  E. x  e.  A  ( F `  x )  =  y ) )
21biimpd 144 . . . 4  |-  ( F  Fn  A  ->  (
y  e.  ran  F  ->  E. x  e.  A  ( F `  x )  =  y ) )
3 eleq1 2292 . . . . . . 7  |-  ( ( F `  x )  =  y  ->  (
( F `  x
)  e.  x  <->  y  e.  x ) )
43biimpcd 159 . . . . . 6  |-  ( ( F `  x )  e.  x  ->  (
( F `  x
)  =  y  -> 
y  e.  x ) )
54ralimi 2593 . . . . 5  |-  ( A. x  e.  A  ( F `  x )  e.  x  ->  A. x  e.  A  ( ( F `  x )  =  y  ->  y  e.  x ) )
6 rexim 2624 . . . . 5  |-  ( A. x  e.  A  (
( F `  x
)  =  y  -> 
y  e.  x )  ->  ( E. x  e.  A  ( F `  x )  =  y  ->  E. x  e.  A  y  e.  x )
)
75, 6syl 14 . . . 4  |-  ( A. x  e.  A  ( F `  x )  e.  x  ->  ( E. x  e.  A  ( F `  x )  =  y  ->  E. x  e.  A  y  e.  x ) )
82, 7sylan9 409 . . 3  |-  ( ( F  Fn  A  /\  A. x  e.  A  ( F `  x )  e.  x )  -> 
( y  e.  ran  F  ->  E. x  e.  A  y  e.  x )
)
9 eluni2 3892 . . 3  |-  ( y  e.  U. A  <->  E. x  e.  A  y  e.  x )
108, 9imbitrrdi 162 . 2  |-  ( ( F  Fn  A  /\  A. x  e.  A  ( F `  x )  e.  x )  -> 
( y  e.  ran  F  ->  y  e.  U. A ) )
1110ssrdv 3230 1  |-  ( ( F  Fn  A  /\  A. x  e.  A  ( F `  x )  e.  x )  ->  ran  F  C_  U. A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1395    e. wcel 2200   A.wral 2508   E.wrex 2509    C_ wss 3197   U.cuni 3888   ran crn 4720    Fn wfn 5313   ` cfv 5318
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-iota 5278  df-fun 5320  df-fn 5321  df-fv 5326
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator