ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexpssxrxp Unicode version

Theorem rexpssxrxp 8064
Description: The Cartesian product of standard reals are a subset of the Cartesian product of extended reals (common case). (Contributed by David A. Wheeler, 8-Dec-2018.)
Assertion
Ref Expression
rexpssxrxp  |-  ( RR 
X.  RR )  C_  ( RR*  X.  RR* )

Proof of Theorem rexpssxrxp
StepHypRef Expression
1 ressxr 8063 . 2  |-  RR  C_  RR*
2 xpss12 4766 . 2  |-  ( ( RR  C_  RR*  /\  RR  C_ 
RR* )  ->  ( RR  X.  RR )  C_  ( RR*  X.  RR* )
)
31, 1, 2mp2an 426 1  |-  ( RR 
X.  RR )  C_  ( RR*  X.  RR* )
Colors of variables: wff set class
Syntax hints:    C_ wss 3153    X. cxp 4657   RRcr 7871   RR*cxr 8053
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-opab 4091  df-xp 4665  df-xr 8058
This theorem is referenced by:  ltrelxr  8080
  Copyright terms: Public domain W3C validator