ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexpssxrxp Unicode version

Theorem rexpssxrxp 8099
Description: The Cartesian product of standard reals are a subset of the Cartesian product of extended reals (common case). (Contributed by David A. Wheeler, 8-Dec-2018.)
Assertion
Ref Expression
rexpssxrxp  |-  ( RR 
X.  RR )  C_  ( RR*  X.  RR* )

Proof of Theorem rexpssxrxp
StepHypRef Expression
1 ressxr 8098 . 2  |-  RR  C_  RR*
2 xpss12 4780 . 2  |-  ( ( RR  C_  RR*  /\  RR  C_ 
RR* )  ->  ( RR  X.  RR )  C_  ( RR*  X.  RR* )
)
31, 1, 2mp2an 426 1  |-  ( RR 
X.  RR )  C_  ( RR*  X.  RR* )
Colors of variables: wff set class
Syntax hints:    C_ wss 3165    X. cxp 4671   RRcr 7906   RR*cxr 8088
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-v 2773  df-un 3169  df-in 3171  df-ss 3178  df-opab 4105  df-xp 4679  df-xr 8093
This theorem is referenced by:  ltrelxr  8115
  Copyright terms: Public domain W3C validator