ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexpssxrxp Unicode version

Theorem rexpssxrxp 8071
Description: The Cartesian product of standard reals are a subset of the Cartesian product of extended reals (common case). (Contributed by David A. Wheeler, 8-Dec-2018.)
Assertion
Ref Expression
rexpssxrxp  |-  ( RR 
X.  RR )  C_  ( RR*  X.  RR* )

Proof of Theorem rexpssxrxp
StepHypRef Expression
1 ressxr 8070 . 2  |-  RR  C_  RR*
2 xpss12 4770 . 2  |-  ( ( RR  C_  RR*  /\  RR  C_ 
RR* )  ->  ( RR  X.  RR )  C_  ( RR*  X.  RR* )
)
31, 1, 2mp2an 426 1  |-  ( RR 
X.  RR )  C_  ( RR*  X.  RR* )
Colors of variables: wff set class
Syntax hints:    C_ wss 3157    X. cxp 4661   RRcr 7878   RR*cxr 8060
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-opab 4095  df-xp 4669  df-xr 8065
This theorem is referenced by:  ltrelxr  8087
  Copyright terms: Public domain W3C validator