ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltrelxr Unicode version

Theorem ltrelxr 8133
Description: 'Less than' is a relation on extended reals. (Contributed by Mario Carneiro, 28-Apr-2015.)
Assertion
Ref Expression
ltrelxr  |-  <  C_  ( RR*  X.  RR* )

Proof of Theorem ltrelxr
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ltxr 8112 . 2  |-  <  =  ( { <. x ,  y
>.  |  ( x  e.  RR  /\  y  e.  RR  /\  x  <RR  y ) }  u.  (
( ( RR  u.  { -oo } )  X. 
{ +oo } )  u.  ( { -oo }  X.  RR ) ) )
2 df-3an 983 . . . . . 6  |-  ( ( x  e.  RR  /\  y  e.  RR  /\  x  <RR  y )  <->  ( (
x  e.  RR  /\  y  e.  RR )  /\  x  <RR  y ) )
32opabbii 4111 . . . . 5  |-  { <. x ,  y >.  |  ( x  e.  RR  /\  y  e.  RR  /\  x  <RR  y ) }  =  { <. x ,  y
>.  |  ( (
x  e.  RR  /\  y  e.  RR )  /\  x  <RR  y ) }
4 opabssxp 4749 . . . . 5  |-  { <. x ,  y >.  |  ( ( x  e.  RR  /\  y  e.  RR )  /\  x  <RR  y ) }  C_  ( RR  X.  RR )
53, 4eqsstri 3225 . . . 4  |-  { <. x ,  y >.  |  ( x  e.  RR  /\  y  e.  RR  /\  x  <RR  y ) }  C_  ( RR  X.  RR )
6 rexpssxrxp 8117 . . . 4  |-  ( RR 
X.  RR )  C_  ( RR*  X.  RR* )
75, 6sstri 3202 . . 3  |-  { <. x ,  y >.  |  ( x  e.  RR  /\  y  e.  RR  /\  x  <RR  y ) }  C_  ( RR*  X.  RR* )
8 ressxr 8116 . . . . . 6  |-  RR  C_  RR*
9 snsspr2 3782 . . . . . . 7  |-  { -oo } 
C_  { +oo , -oo }
10 ssun2 3337 . . . . . . . 8  |-  { +oo , -oo }  C_  ( RR  u.  { +oo , -oo } )
11 df-xr 8111 . . . . . . . 8  |-  RR*  =  ( RR  u.  { +oo , -oo } )
1210, 11sseqtrri 3228 . . . . . . 7  |-  { +oo , -oo }  C_  RR*
139, 12sstri 3202 . . . . . 6  |-  { -oo } 
C_  RR*
148, 13unssi 3348 . . . . 5  |-  ( RR  u.  { -oo }
)  C_  RR*
15 snsspr1 3781 . . . . . 6  |-  { +oo } 
C_  { +oo , -oo }
1615, 12sstri 3202 . . . . 5  |-  { +oo } 
C_  RR*
17 xpss12 4782 . . . . 5  |-  ( ( ( RR  u.  { -oo } )  C_  RR*  /\  { +oo }  C_  RR* )  -> 
( ( RR  u.  { -oo } )  X. 
{ +oo } )  C_  ( RR*  X.  RR* )
)
1814, 16, 17mp2an 426 . . . 4  |-  ( ( RR  u.  { -oo } )  X.  { +oo } )  C_  ( RR*  X. 
RR* )
19 xpss12 4782 . . . . 5  |-  ( ( { -oo }  C_  RR* 
/\  RR  C_  RR* )  ->  ( { -oo }  X.  RR )  C_  ( RR*  X.  RR* ) )
2013, 8, 19mp2an 426 . . . 4  |-  ( { -oo }  X.  RR )  C_  ( RR*  X.  RR* )
2118, 20unssi 3348 . . 3  |-  ( ( ( RR  u.  { -oo } )  X.  { +oo } )  u.  ( { -oo }  X.  RR ) )  C_  ( RR*  X.  RR* )
227, 21unssi 3348 . 2  |-  ( {
<. x ,  y >.  |  ( x  e.  RR  /\  y  e.  RR  /\  x  <RR  y ) }  u.  (
( ( RR  u.  { -oo } )  X. 
{ +oo } )  u.  ( { -oo }  X.  RR ) ) ) 
C_  ( RR*  X.  RR* )
231, 22eqsstri 3225 1  |-  <  C_  ( RR*  X.  RR* )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    /\ w3a 981    e. wcel 2176    u. cun 3164    C_ wss 3166   {csn 3633   {cpr 3634   class class class wbr 4044   {copab 4104    X. cxp 4673   RRcr 7924    <RR cltrr 7929   +oocpnf 8104   -oocmnf 8105   RR*cxr 8106    < clt 8107
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-v 2774  df-un 3170  df-in 3172  df-ss 3179  df-pr 3640  df-opab 4106  df-xp 4681  df-xr 8111  df-ltxr 8112
This theorem is referenced by:  ltrel  8134
  Copyright terms: Public domain W3C validator