ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltrelxr Unicode version

Theorem ltrelxr 8203
Description: 'Less than' is a relation on extended reals. (Contributed by Mario Carneiro, 28-Apr-2015.)
Assertion
Ref Expression
ltrelxr  |-  <  C_  ( RR*  X.  RR* )

Proof of Theorem ltrelxr
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ltxr 8182 . 2  |-  <  =  ( { <. x ,  y
>.  |  ( x  e.  RR  /\  y  e.  RR  /\  x  <RR  y ) }  u.  (
( ( RR  u.  { -oo } )  X. 
{ +oo } )  u.  ( { -oo }  X.  RR ) ) )
2 df-3an 1004 . . . . . 6  |-  ( ( x  e.  RR  /\  y  e.  RR  /\  x  <RR  y )  <->  ( (
x  e.  RR  /\  y  e.  RR )  /\  x  <RR  y ) )
32opabbii 4150 . . . . 5  |-  { <. x ,  y >.  |  ( x  e.  RR  /\  y  e.  RR  /\  x  <RR  y ) }  =  { <. x ,  y
>.  |  ( (
x  e.  RR  /\  y  e.  RR )  /\  x  <RR  y ) }
4 opabssxp 4792 . . . . 5  |-  { <. x ,  y >.  |  ( ( x  e.  RR  /\  y  e.  RR )  /\  x  <RR  y ) }  C_  ( RR  X.  RR )
53, 4eqsstri 3256 . . . 4  |-  { <. x ,  y >.  |  ( x  e.  RR  /\  y  e.  RR  /\  x  <RR  y ) }  C_  ( RR  X.  RR )
6 rexpssxrxp 8187 . . . 4  |-  ( RR 
X.  RR )  C_  ( RR*  X.  RR* )
75, 6sstri 3233 . . 3  |-  { <. x ,  y >.  |  ( x  e.  RR  /\  y  e.  RR  /\  x  <RR  y ) }  C_  ( RR*  X.  RR* )
8 ressxr 8186 . . . . . 6  |-  RR  C_  RR*
9 snsspr2 3816 . . . . . . 7  |-  { -oo } 
C_  { +oo , -oo }
10 ssun2 3368 . . . . . . . 8  |-  { +oo , -oo }  C_  ( RR  u.  { +oo , -oo } )
11 df-xr 8181 . . . . . . . 8  |-  RR*  =  ( RR  u.  { +oo , -oo } )
1210, 11sseqtrri 3259 . . . . . . 7  |-  { +oo , -oo }  C_  RR*
139, 12sstri 3233 . . . . . 6  |-  { -oo } 
C_  RR*
148, 13unssi 3379 . . . . 5  |-  ( RR  u.  { -oo }
)  C_  RR*
15 snsspr1 3815 . . . . . 6  |-  { +oo } 
C_  { +oo , -oo }
1615, 12sstri 3233 . . . . 5  |-  { +oo } 
C_  RR*
17 xpss12 4825 . . . . 5  |-  ( ( ( RR  u.  { -oo } )  C_  RR*  /\  { +oo }  C_  RR* )  -> 
( ( RR  u.  { -oo } )  X. 
{ +oo } )  C_  ( RR*  X.  RR* )
)
1814, 16, 17mp2an 426 . . . 4  |-  ( ( RR  u.  { -oo } )  X.  { +oo } )  C_  ( RR*  X. 
RR* )
19 xpss12 4825 . . . . 5  |-  ( ( { -oo }  C_  RR* 
/\  RR  C_  RR* )  ->  ( { -oo }  X.  RR )  C_  ( RR*  X.  RR* ) )
2013, 8, 19mp2an 426 . . . 4  |-  ( { -oo }  X.  RR )  C_  ( RR*  X.  RR* )
2118, 20unssi 3379 . . 3  |-  ( ( ( RR  u.  { -oo } )  X.  { +oo } )  u.  ( { -oo }  X.  RR ) )  C_  ( RR*  X.  RR* )
227, 21unssi 3379 . 2  |-  ( {
<. x ,  y >.  |  ( x  e.  RR  /\  y  e.  RR  /\  x  <RR  y ) }  u.  (
( ( RR  u.  { -oo } )  X. 
{ +oo } )  u.  ( { -oo }  X.  RR ) ) ) 
C_  ( RR*  X.  RR* )
231, 22eqsstri 3256 1  |-  <  C_  ( RR*  X.  RR* )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    /\ w3a 1002    e. wcel 2200    u. cun 3195    C_ wss 3197   {csn 3666   {cpr 3667   class class class wbr 4082   {copab 4143    X. cxp 4716   RRcr 7994    <RR cltrr 7999   +oocpnf 8174   -oocmnf 8175   RR*cxr 8176    < clt 8177
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pr 3673  df-opab 4145  df-xp 4724  df-xr 8181  df-ltxr 8182
This theorem is referenced by:  ltrel  8204
  Copyright terms: Public domain W3C validator