ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltrelxr Unicode version

Theorem ltrelxr 7980
Description: 'Less than' is a relation on extended reals. (Contributed by Mario Carneiro, 28-Apr-2015.)
Assertion
Ref Expression
ltrelxr  |-  <  C_  ( RR*  X.  RR* )

Proof of Theorem ltrelxr
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ltxr 7959 . 2  |-  <  =  ( { <. x ,  y
>.  |  ( x  e.  RR  /\  y  e.  RR  /\  x  <RR  y ) }  u.  (
( ( RR  u.  { -oo } )  X. 
{ +oo } )  u.  ( { -oo }  X.  RR ) ) )
2 df-3an 975 . . . . . 6  |-  ( ( x  e.  RR  /\  y  e.  RR  /\  x  <RR  y )  <->  ( (
x  e.  RR  /\  y  e.  RR )  /\  x  <RR  y ) )
32opabbii 4056 . . . . 5  |-  { <. x ,  y >.  |  ( x  e.  RR  /\  y  e.  RR  /\  x  <RR  y ) }  =  { <. x ,  y
>.  |  ( (
x  e.  RR  /\  y  e.  RR )  /\  x  <RR  y ) }
4 opabssxp 4685 . . . . 5  |-  { <. x ,  y >.  |  ( ( x  e.  RR  /\  y  e.  RR )  /\  x  <RR  y ) }  C_  ( RR  X.  RR )
53, 4eqsstri 3179 . . . 4  |-  { <. x ,  y >.  |  ( x  e.  RR  /\  y  e.  RR  /\  x  <RR  y ) }  C_  ( RR  X.  RR )
6 rexpssxrxp 7964 . . . 4  |-  ( RR 
X.  RR )  C_  ( RR*  X.  RR* )
75, 6sstri 3156 . . 3  |-  { <. x ,  y >.  |  ( x  e.  RR  /\  y  e.  RR  /\  x  <RR  y ) }  C_  ( RR*  X.  RR* )
8 ressxr 7963 . . . . . 6  |-  RR  C_  RR*
9 snsspr2 3729 . . . . . . 7  |-  { -oo } 
C_  { +oo , -oo }
10 ssun2 3291 . . . . . . . 8  |-  { +oo , -oo }  C_  ( RR  u.  { +oo , -oo } )
11 df-xr 7958 . . . . . . . 8  |-  RR*  =  ( RR  u.  { +oo , -oo } )
1210, 11sseqtrri 3182 . . . . . . 7  |-  { +oo , -oo }  C_  RR*
139, 12sstri 3156 . . . . . 6  |-  { -oo } 
C_  RR*
148, 13unssi 3302 . . . . 5  |-  ( RR  u.  { -oo }
)  C_  RR*
15 snsspr1 3728 . . . . . 6  |-  { +oo } 
C_  { +oo , -oo }
1615, 12sstri 3156 . . . . 5  |-  { +oo } 
C_  RR*
17 xpss12 4718 . . . . 5  |-  ( ( ( RR  u.  { -oo } )  C_  RR*  /\  { +oo }  C_  RR* )  -> 
( ( RR  u.  { -oo } )  X. 
{ +oo } )  C_  ( RR*  X.  RR* )
)
1814, 16, 17mp2an 424 . . . 4  |-  ( ( RR  u.  { -oo } )  X.  { +oo } )  C_  ( RR*  X. 
RR* )
19 xpss12 4718 . . . . 5  |-  ( ( { -oo }  C_  RR* 
/\  RR  C_  RR* )  ->  ( { -oo }  X.  RR )  C_  ( RR*  X.  RR* ) )
2013, 8, 19mp2an 424 . . . 4  |-  ( { -oo }  X.  RR )  C_  ( RR*  X.  RR* )
2118, 20unssi 3302 . . 3  |-  ( ( ( RR  u.  { -oo } )  X.  { +oo } )  u.  ( { -oo }  X.  RR ) )  C_  ( RR*  X.  RR* )
227, 21unssi 3302 . 2  |-  ( {
<. x ,  y >.  |  ( x  e.  RR  /\  y  e.  RR  /\  x  <RR  y ) }  u.  (
( ( RR  u.  { -oo } )  X. 
{ +oo } )  u.  ( { -oo }  X.  RR ) ) ) 
C_  ( RR*  X.  RR* )
231, 22eqsstri 3179 1  |-  <  C_  ( RR*  X.  RR* )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    /\ w3a 973    e. wcel 2141    u. cun 3119    C_ wss 3121   {csn 3583   {cpr 3584   class class class wbr 3989   {copab 4049    X. cxp 4609   RRcr 7773    <RR cltrr 7778   +oocpnf 7951   -oocmnf 7952   RR*cxr 7953    < clt 7954
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-pr 3590  df-opab 4051  df-xp 4617  df-xr 7958  df-ltxr 7959
This theorem is referenced by:  ltrel  7981
  Copyright terms: Public domain W3C validator