| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xpss12 | Unicode version | ||
| Description: Subset theorem for cross product. Generalization of Theorem 101 of [Suppes] p. 52. (Contributed by NM, 26-Aug-1995.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| Ref | Expression |
|---|---|
| xpss12 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssel 3178 |
. . . 4
| |
| 2 | ssel 3178 |
. . . 4
| |
| 3 | 1, 2 | im2anan9 598 |
. . 3
|
| 4 | 3 | ssopab2dv 4314 |
. 2
|
| 5 | df-xp 4670 |
. 2
| |
| 6 | df-xp 4670 |
. 2
| |
| 7 | 4, 5, 6 | 3sstr4g 3227 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-in 3163 df-ss 3170 df-opab 4096 df-xp 4670 |
| This theorem is referenced by: xpss 4772 xpss1 4774 xpss2 4775 djussxp 4812 ssxpbm 5106 ssrnres 5113 cossxp 5193 cossxp2 5194 cocnvss 5196 relrelss 5197 fssxp 5428 oprabss 6012 pmss12g 6743 caserel 7162 casef 7163 dmaddpi 7411 dmmulpi 7412 rexpssxrxp 8090 ltrelxr 8106 dfz2 9417 phimullem 12420 znleval 14287 txuni2 14600 txbas 14602 neitx 14612 txcnp 14615 cnmpt2res 14641 psmetres2 14677 xmetres2 14723 metres2 14725 xmetresbl 14784 xmettx 14854 qtopbasss 14865 tgqioo 14899 resubmet 14900 limccnp2lem 15020 limccnp2cntop 15021 mpodvdsmulf1o 15334 fsumdvdsmul 15335 |
| Copyright terms: Public domain | W3C validator |