| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > xpss12 | Unicode version | ||
| Description: Subset theorem for cross product. Generalization of Theorem 101 of [Suppes] p. 52. (Contributed by NM, 26-Aug-1995.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) | 
| Ref | Expression | 
|---|---|
| xpss12 | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ssel 3177 | 
. . . 4
 | |
| 2 | ssel 3177 | 
. . . 4
 | |
| 3 | 1, 2 | im2anan9 598 | 
. . 3
 | 
| 4 | 3 | ssopab2dv 4313 | 
. 2
 | 
| 5 | df-xp 4669 | 
. 2
 | |
| 6 | df-xp 4669 | 
. 2
 | |
| 7 | 4, 5, 6 | 3sstr4g 3226 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-in 3163 df-ss 3170 df-opab 4095 df-xp 4669 | 
| This theorem is referenced by: xpss 4771 xpss1 4773 xpss2 4774 djussxp 4811 ssxpbm 5105 ssrnres 5112 cossxp 5192 cossxp2 5193 cocnvss 5195 relrelss 5196 fssxp 5425 oprabss 6008 pmss12g 6734 caserel 7153 casef 7154 dmaddpi 7392 dmmulpi 7393 rexpssxrxp 8071 ltrelxr 8087 dfz2 9398 phimullem 12393 znleval 14209 txuni2 14492 txbas 14494 neitx 14504 txcnp 14507 cnmpt2res 14533 psmetres2 14569 xmetres2 14615 metres2 14617 xmetresbl 14676 xmettx 14746 qtopbasss 14757 tgqioo 14791 resubmet 14792 limccnp2lem 14912 limccnp2cntop 14913 mpodvdsmulf1o 15226 fsumdvdsmul 15227 | 
| Copyright terms: Public domain | W3C validator |