ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ressxr Unicode version

Theorem ressxr 8190
Description: The standard reals are a subset of the extended reals. (Contributed by NM, 14-Oct-2005.)
Assertion
Ref Expression
ressxr  |-  RR  C_  RR*

Proof of Theorem ressxr
StepHypRef Expression
1 ssun1 3367 . 2  |-  RR  C_  ( RR  u.  { +oo , -oo } )
2 df-xr 8185 . 2  |-  RR*  =  ( RR  u.  { +oo , -oo } )
31, 2sseqtrri 3259 1  |-  RR  C_  RR*
Colors of variables: wff set class
Syntax hints:    u. cun 3195    C_ wss 3197   {cpr 3667   RRcr 7998   +oocpnf 8178   -oocmnf 8179   RR*cxr 8180
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-xr 8185
This theorem is referenced by:  rexpssxrxp  8191  rexr  8192  0xr  8193  rexrd  8196  ltrelxr  8207  iooval2  10111  fzval2  10207  seq3coll  11064  summodclem2a  11892  prodmodclem2a  12087  ismet2  15028  qtopbas  15196  tgqioo  15229
  Copyright terms: Public domain W3C validator