ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ressxr Unicode version

Theorem ressxr 7942
Description: The standard reals are a subset of the extended reals. (Contributed by NM, 14-Oct-2005.)
Assertion
Ref Expression
ressxr  |-  RR  C_  RR*

Proof of Theorem ressxr
StepHypRef Expression
1 ssun1 3285 . 2  |-  RR  C_  ( RR  u.  { +oo , -oo } )
2 df-xr 7937 . 2  |-  RR*  =  ( RR  u.  { +oo , -oo } )
31, 2sseqtrri 3177 1  |-  RR  C_  RR*
Colors of variables: wff set class
Syntax hints:    u. cun 3114    C_ wss 3116   {cpr 3577   RRcr 7752   +oocpnf 7930   -oocmnf 7931   RR*cxr 7932
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-xr 7937
This theorem is referenced by:  rexpssxrxp  7943  rexr  7944  0xr  7945  rexrd  7948  ltrelxr  7959  iooval2  9851  fzval2  9947  seq3coll  10755  summodclem2a  11322  prodmodclem2a  11517  ismet2  12994  qtopbas  13162  tgqioo  13187
  Copyright terms: Public domain W3C validator