| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rexr | Unicode version | ||
| Description: A standard real is an extended real. (Contributed by NM, 14-Oct-2005.) |
| Ref | Expression |
|---|---|
| rexr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ressxr 8186 |
. 2
| |
| 2 | 1 | sseli 3220 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-xr 8181 |
| This theorem is referenced by: rexri 8200 lenlt 8218 ltpnf 9972 mnflt 9975 xrltnsym 9985 xrlttr 9987 xrltso 9988 xrre 10012 xrre3 10014 xltnegi 10027 rexadd 10044 xaddnemnf 10049 xaddnepnf 10050 xaddcom 10053 xnegdi 10060 xpncan 10063 xnpcan 10064 xleadd1a 10065 xleadd1 10067 xltadd1 10068 xltadd2 10069 xsubge0 10073 xposdif 10074 elioo4g 10126 elioc2 10128 elico2 10129 elicc2 10130 iccss 10133 iooshf 10144 iooneg 10180 icoshft 10182 qbtwnxr 10472 modqmuladdim 10584 elicc4abs 11600 icodiamlt 11686 xrmaxrecl 11761 xrmaxaddlem 11766 xrminrecl 11779 bl2in 15071 blssps 15095 blss 15096 reopnap 15214 bl2ioo 15218 blssioo 15221 sincosq2sgn 15495 sincosq3sgn 15496 sincos6thpi 15510 |
| Copyright terms: Public domain | W3C validator |