| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rexr | Unicode version | ||
| Description: A standard real is an extended real. (Contributed by NM, 14-Oct-2005.) |
| Ref | Expression |
|---|---|
| rexr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ressxr 8116 |
. 2
| |
| 2 | 1 | sseli 3189 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 df-un 3170 df-in 3172 df-ss 3179 df-xr 8111 |
| This theorem is referenced by: rexri 8130 lenlt 8148 ltpnf 9902 mnflt 9905 xrltnsym 9915 xrlttr 9917 xrltso 9918 xrre 9942 xrre3 9944 xltnegi 9957 rexadd 9974 xaddnemnf 9979 xaddnepnf 9980 xaddcom 9983 xnegdi 9990 xpncan 9993 xnpcan 9994 xleadd1a 9995 xleadd1 9997 xltadd1 9998 xltadd2 9999 xsubge0 10003 xposdif 10004 elioo4g 10056 elioc2 10058 elico2 10059 elicc2 10060 iccss 10063 iooshf 10074 iooneg 10110 icoshft 10112 qbtwnxr 10400 modqmuladdim 10512 elicc4abs 11405 icodiamlt 11491 xrmaxrecl 11566 xrmaxaddlem 11571 xrminrecl 11584 bl2in 14875 blssps 14899 blss 14900 reopnap 15018 bl2ioo 15022 blssioo 15025 sincosq2sgn 15299 sincosq3sgn 15300 sincos6thpi 15314 |
| Copyright terms: Public domain | W3C validator |