Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rexr | Unicode version |
Description: A standard real is an extended real. (Contributed by NM, 14-Oct-2005.) |
Ref | Expression |
---|---|
rexr |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ressxr 7915 | . 2 | |
2 | 1 | sseli 3124 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wcel 2128 cr 7725 cxr 7905 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-ext 2139 |
This theorem depends on definitions: df-bi 116 df-tru 1338 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-v 2714 df-un 3106 df-in 3108 df-ss 3115 df-xr 7910 |
This theorem is referenced by: rexri 7929 lenlt 7947 ltpnf 9680 mnflt 9683 xrltnsym 9693 xrlttr 9695 xrltso 9696 xrre 9717 xrre3 9719 xltnegi 9732 rexadd 9749 xaddnemnf 9754 xaddnepnf 9755 xaddcom 9758 xnegdi 9765 xpncan 9768 xnpcan 9769 xleadd1a 9770 xleadd1 9772 xltadd1 9773 xltadd2 9774 xsubge0 9778 xposdif 9779 elioo4g 9831 elioc2 9833 elico2 9834 elicc2 9835 iccss 9838 iooshf 9849 iooneg 9885 icoshft 9887 qbtwnxr 10150 modqmuladdim 10259 elicc4abs 10987 icodiamlt 11073 xrmaxrecl 11145 xrmaxaddlem 11150 xrminrecl 11163 bl2in 12774 blssps 12798 blss 12799 reopnap 12909 bl2ioo 12913 blssioo 12916 sincosq2sgn 13119 sincosq3sgn 13120 sincos6thpi 13134 |
Copyright terms: Public domain | W3C validator |