| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rexr | Unicode version | ||
| Description: A standard real is an extended real. (Contributed by NM, 14-Oct-2005.) |
| Ref | Expression |
|---|---|
| rexr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ressxr 8072 |
. 2
| |
| 2 | 1 | sseli 3180 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-xr 8067 |
| This theorem is referenced by: rexri 8086 lenlt 8104 ltpnf 9857 mnflt 9860 xrltnsym 9870 xrlttr 9872 xrltso 9873 xrre 9897 xrre3 9899 xltnegi 9912 rexadd 9929 xaddnemnf 9934 xaddnepnf 9935 xaddcom 9938 xnegdi 9945 xpncan 9948 xnpcan 9949 xleadd1a 9950 xleadd1 9952 xltadd1 9953 xltadd2 9954 xsubge0 9958 xposdif 9959 elioo4g 10011 elioc2 10013 elico2 10014 elicc2 10015 iccss 10018 iooshf 10029 iooneg 10065 icoshft 10067 qbtwnxr 10349 modqmuladdim 10461 elicc4abs 11261 icodiamlt 11347 xrmaxrecl 11422 xrmaxaddlem 11427 xrminrecl 11440 bl2in 14649 blssps 14673 blss 14674 reopnap 14792 bl2ioo 14796 blssioo 14799 sincosq2sgn 15073 sincosq3sgn 15074 sincos6thpi 15088 |
| Copyright terms: Public domain | W3C validator |