![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > rexr | Unicode version |
Description: A standard real is an extended real. (Contributed by NM, 14-Oct-2005.) |
Ref | Expression |
---|---|
rexr |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ressxr 7999 |
. 2
![]() ![]() ![]() ![]() | |
2 | 1 | sseli 3151 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-v 2739 df-un 3133 df-in 3135 df-ss 3142 df-xr 7994 |
This theorem is referenced by: rexri 8013 lenlt 8031 ltpnf 9778 mnflt 9781 xrltnsym 9791 xrlttr 9793 xrltso 9794 xrre 9818 xrre3 9820 xltnegi 9833 rexadd 9850 xaddnemnf 9855 xaddnepnf 9856 xaddcom 9859 xnegdi 9866 xpncan 9869 xnpcan 9870 xleadd1a 9871 xleadd1 9873 xltadd1 9874 xltadd2 9875 xsubge0 9879 xposdif 9880 elioo4g 9932 elioc2 9934 elico2 9935 elicc2 9936 iccss 9939 iooshf 9950 iooneg 9986 icoshft 9988 qbtwnxr 10255 modqmuladdim 10364 elicc4abs 11098 icodiamlt 11184 xrmaxrecl 11258 xrmaxaddlem 11263 xrminrecl 11276 bl2in 13834 blssps 13858 blss 13859 reopnap 13969 bl2ioo 13973 blssioo 13976 sincosq2sgn 14179 sincosq3sgn 14180 sincos6thpi 14194 |
Copyright terms: Public domain | W3C validator |