| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rexr | Unicode version | ||
| Description: A standard real is an extended real. (Contributed by NM, 14-Oct-2005.) |
| Ref | Expression |
|---|---|
| rexr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ressxr 8115 |
. 2
| |
| 2 | 1 | sseli 3188 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-v 2773 df-un 3169 df-in 3171 df-ss 3178 df-xr 8110 |
| This theorem is referenced by: rexri 8129 lenlt 8147 ltpnf 9901 mnflt 9904 xrltnsym 9914 xrlttr 9916 xrltso 9917 xrre 9941 xrre3 9943 xltnegi 9956 rexadd 9973 xaddnemnf 9978 xaddnepnf 9979 xaddcom 9982 xnegdi 9989 xpncan 9992 xnpcan 9993 xleadd1a 9994 xleadd1 9996 xltadd1 9997 xltadd2 9998 xsubge0 10002 xposdif 10003 elioo4g 10055 elioc2 10057 elico2 10058 elicc2 10059 iccss 10062 iooshf 10073 iooneg 10109 icoshft 10111 qbtwnxr 10398 modqmuladdim 10510 elicc4abs 11376 icodiamlt 11462 xrmaxrecl 11537 xrmaxaddlem 11542 xrminrecl 11555 bl2in 14846 blssps 14870 blss 14871 reopnap 14989 bl2ioo 14993 blssioo 14996 sincosq2sgn 15270 sincosq3sgn 15271 sincos6thpi 15285 |
| Copyright terms: Public domain | W3C validator |