![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > rexr | Unicode version |
Description: A standard real is an extended real. (Contributed by NM, 14-Oct-2005.) |
Ref | Expression |
---|---|
rexr |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ressxr 8065 |
. 2
![]() ![]() ![]() ![]() | |
2 | 1 | sseli 3176 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-un 3158 df-in 3160 df-ss 3167 df-xr 8060 |
This theorem is referenced by: rexri 8079 lenlt 8097 ltpnf 9849 mnflt 9852 xrltnsym 9862 xrlttr 9864 xrltso 9865 xrre 9889 xrre3 9891 xltnegi 9904 rexadd 9921 xaddnemnf 9926 xaddnepnf 9927 xaddcom 9930 xnegdi 9937 xpncan 9940 xnpcan 9941 xleadd1a 9942 xleadd1 9944 xltadd1 9945 xltadd2 9946 xsubge0 9950 xposdif 9951 elioo4g 10003 elioc2 10005 elico2 10006 elicc2 10007 iccss 10010 iooshf 10021 iooneg 10057 icoshft 10059 qbtwnxr 10329 modqmuladdim 10441 elicc4abs 11241 icodiamlt 11327 xrmaxrecl 11401 xrmaxaddlem 11406 xrminrecl 11419 bl2in 14582 blssps 14606 blss 14607 reopnap 14725 bl2ioo 14729 blssioo 14732 sincosq2sgn 15003 sincosq3sgn 15004 sincos6thpi 15018 |
Copyright terms: Public domain | W3C validator |