Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rexr | Unicode version |
Description: A standard real is an extended real. (Contributed by NM, 14-Oct-2005.) |
Ref | Expression |
---|---|
rexr |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ressxr 7963 | . 2 | |
2 | 1 | sseli 3143 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wcel 2141 cr 7773 cxr 7953 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-xr 7958 |
This theorem is referenced by: rexri 7977 lenlt 7995 ltpnf 9737 mnflt 9740 xrltnsym 9750 xrlttr 9752 xrltso 9753 xrre 9777 xrre3 9779 xltnegi 9792 rexadd 9809 xaddnemnf 9814 xaddnepnf 9815 xaddcom 9818 xnegdi 9825 xpncan 9828 xnpcan 9829 xleadd1a 9830 xleadd1 9832 xltadd1 9833 xltadd2 9834 xsubge0 9838 xposdif 9839 elioo4g 9891 elioc2 9893 elico2 9894 elicc2 9895 iccss 9898 iooshf 9909 iooneg 9945 icoshft 9947 qbtwnxr 10214 modqmuladdim 10323 elicc4abs 11058 icodiamlt 11144 xrmaxrecl 11218 xrmaxaddlem 11223 xrminrecl 11236 bl2in 13197 blssps 13221 blss 13222 reopnap 13332 bl2ioo 13336 blssioo 13339 sincosq2sgn 13542 sincosq3sgn 13543 sincos6thpi 13557 |
Copyright terms: Public domain | W3C validator |