| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rexr | Unicode version | ||
| Description: A standard real is an extended real. (Contributed by NM, 14-Oct-2005.) |
| Ref | Expression |
|---|---|
| rexr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ressxr 8146 |
. 2
| |
| 2 | 1 | sseli 3193 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-v 2775 df-un 3174 df-in 3176 df-ss 3183 df-xr 8141 |
| This theorem is referenced by: rexri 8160 lenlt 8178 ltpnf 9932 mnflt 9935 xrltnsym 9945 xrlttr 9947 xrltso 9948 xrre 9972 xrre3 9974 xltnegi 9987 rexadd 10004 xaddnemnf 10009 xaddnepnf 10010 xaddcom 10013 xnegdi 10020 xpncan 10023 xnpcan 10024 xleadd1a 10025 xleadd1 10027 xltadd1 10028 xltadd2 10029 xsubge0 10033 xposdif 10034 elioo4g 10086 elioc2 10088 elico2 10089 elicc2 10090 iccss 10093 iooshf 10104 iooneg 10140 icoshft 10142 qbtwnxr 10432 modqmuladdim 10544 elicc4abs 11490 icodiamlt 11576 xrmaxrecl 11651 xrmaxaddlem 11656 xrminrecl 11669 bl2in 14960 blssps 14984 blss 14985 reopnap 15103 bl2ioo 15107 blssioo 15110 sincosq2sgn 15384 sincosq3sgn 15385 sincos6thpi 15399 |
| Copyright terms: Public domain | W3C validator |