ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  riotabiia Unicode version

Theorem riotabiia 5838
Description: Equivalent wff's yield equal restricted iotas (inference form). (rabbiia 2720 analog.) (Contributed by NM, 16-Jan-2012.)
Hypothesis
Ref Expression
riotabiia.1  |-  ( x  e.  A  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
riotabiia  |-  ( iota_ x  e.  A  ph )  =  ( iota_ x  e.  A  ps )

Proof of Theorem riotabiia
StepHypRef Expression
1 eqid 2175 . 2  |-  _V  =  _V
2 riotabiia.1 . . . 4  |-  ( x  e.  A  ->  ( ph 
<->  ps ) )
32adantl 277 . . 3  |-  ( ( _V  =  _V  /\  x  e.  A )  ->  ( ph  <->  ps )
)
43riotabidva 5837 . 2  |-  ( _V  =  _V  ->  ( iota_ x  e.  A  ph )  =  ( iota_ x  e.  A  ps )
)
51, 4ax-mp 5 1  |-  ( iota_ x  e.  A  ph )  =  ( iota_ x  e.  A  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1353    e. wcel 2146   _Vcvv 2735   iota_crio 5820
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-ext 2157
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1459  df-sb 1761  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-rex 2459  df-uni 3806  df-iota 5170  df-riota 5821
This theorem is referenced by:  caucvgsrlemfv  7765  dfgcd3  11976
  Copyright terms: Public domain W3C validator