ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  riotabiia Unicode version

Theorem riotabiia 5815
Description: Equivalent wff's yield equal restricted iotas (inference form). (rabbiia 2711 analog.) (Contributed by NM, 16-Jan-2012.)
Hypothesis
Ref Expression
riotabiia.1  |-  ( x  e.  A  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
riotabiia  |-  ( iota_ x  e.  A  ph )  =  ( iota_ x  e.  A  ps )

Proof of Theorem riotabiia
StepHypRef Expression
1 eqid 2165 . 2  |-  _V  =  _V
2 riotabiia.1 . . . 4  |-  ( x  e.  A  ->  ( ph 
<->  ps ) )
32adantl 275 . . 3  |-  ( ( _V  =  _V  /\  x  e.  A )  ->  ( ph  <->  ps )
)
43riotabidva 5814 . 2  |-  ( _V  =  _V  ->  ( iota_ x  e.  A  ph )  =  ( iota_ x  e.  A  ps )
)
51, 4ax-mp 5 1  |-  ( iota_ x  e.  A  ph )  =  ( iota_ x  e.  A  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    = wceq 1343    e. wcel 2136   _Vcvv 2726   iota_crio 5797
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-rex 2450  df-uni 3790  df-iota 5153  df-riota 5798
This theorem is referenced by:  caucvgsrlemfv  7732  dfgcd3  11943
  Copyright terms: Public domain W3C validator