ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  riotabidva Unicode version

Theorem riotabidva 5825
Description: Equivalent wff's yield equal restricted class abstractions (deduction form). (rabbidva 2718 analog.) (Contributed by NM, 17-Jan-2012.)
Hypothesis
Ref Expression
riotabidva.1  |-  ( (
ph  /\  x  e.  A )  ->  ( ps 
<->  ch ) )
Assertion
Ref Expression
riotabidva  |-  ( ph  ->  ( iota_ x  e.  A  ps )  =  ( iota_ x  e.  A  ch ) )
Distinct variable group:    ph, x
Allowed substitution hints:    ps( x)    ch( x)    A( x)

Proof of Theorem riotabidva
StepHypRef Expression
1 riotabidva.1 . . . 4  |-  ( (
ph  /\  x  e.  A )  ->  ( ps 
<->  ch ) )
21pm5.32da 449 . . 3  |-  ( ph  ->  ( ( x  e.  A  /\  ps )  <->  ( x  e.  A  /\  ch ) ) )
32iotabidv 5181 . 2  |-  ( ph  ->  ( iota x ( x  e.  A  /\  ps ) )  =  ( iota x ( x  e.  A  /\  ch ) ) )
4 df-riota 5809 . 2  |-  ( iota_ x  e.  A  ps )  =  ( iota x
( x  e.  A  /\  ps ) )
5 df-riota 5809 . 2  |-  ( iota_ x  e.  A  ch )  =  ( iota x
( x  e.  A  /\  ch ) )
63, 4, 53eqtr4g 2228 1  |-  ( ph  ->  ( iota_ x  e.  A  ps )  =  ( iota_ x  e.  A  ch ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1348    e. wcel 2141   iotacio 5158   iota_crio 5808
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-rex 2454  df-uni 3797  df-iota 5160  df-riota 5809
This theorem is referenced by:  riotabiia  5826  divfnzn  9580
  Copyright terms: Public domain W3C validator