ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  riotabidva Unicode version

Theorem riotabidva 5972
Description: Equivalent wff's yield equal restricted class abstractions (deduction form). (rabbidva 2787 analog.) (Contributed by NM, 17-Jan-2012.)
Hypothesis
Ref Expression
riotabidva.1  |-  ( (
ph  /\  x  e.  A )  ->  ( ps 
<->  ch ) )
Assertion
Ref Expression
riotabidva  |-  ( ph  ->  ( iota_ x  e.  A  ps )  =  ( iota_ x  e.  A  ch ) )
Distinct variable group:    ph, x
Allowed substitution hints:    ps( x)    ch( x)    A( x)

Proof of Theorem riotabidva
StepHypRef Expression
1 riotabidva.1 . . . 4  |-  ( (
ph  /\  x  e.  A )  ->  ( ps 
<->  ch ) )
21pm5.32da 452 . . 3  |-  ( ph  ->  ( ( x  e.  A  /\  ps )  <->  ( x  e.  A  /\  ch ) ) )
32iotabidv 5301 . 2  |-  ( ph  ->  ( iota x ( x  e.  A  /\  ps ) )  =  ( iota x ( x  e.  A  /\  ch ) ) )
4 df-riota 5954 . 2  |-  ( iota_ x  e.  A  ps )  =  ( iota x
( x  e.  A  /\  ps ) )
5 df-riota 5954 . 2  |-  ( iota_ x  e.  A  ch )  =  ( iota x
( x  e.  A  /\  ch ) )
63, 4, 53eqtr4g 2287 1  |-  ( ph  ->  ( iota_ x  e.  A  ps )  =  ( iota_ x  e.  A  ch ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1395    e. wcel 2200   iotacio 5276   iota_crio 5953
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-rex 2514  df-uni 3889  df-iota 5278  df-riota 5954
This theorem is referenced by:  riotabiia  5973  divfnzn  9816  grpinvpropdg  13608  oppr1g  14045
  Copyright terms: Public domain W3C validator