Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  riotabidva Unicode version

Theorem riotabidva 5746
 Description: Equivalent wff's yield equal restricted class abstractions (deduction form). (rabbidva 2674 analog.) (Contributed by NM, 17-Jan-2012.)
Hypothesis
Ref Expression
riotabidva.1
Assertion
Ref Expression
riotabidva
Distinct variable group:   ,
Allowed substitution hints:   ()   ()   ()

Proof of Theorem riotabidva
StepHypRef Expression
1 riotabidva.1 . . . 4
21pm5.32da 447 . . 3
32iotabidv 5109 . 2
4 df-riota 5730 . 2
5 df-riota 5730 . 2
63, 4, 53eqtr4g 2197 1
 Colors of variables: wff set class Syntax hints:   wi 4   wa 103   wb 104   wceq 1331   wcel 1480  cio 5086  crio 5729 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121 This theorem depends on definitions:  df-bi 116  df-tru 1334  df-nf 1437  df-sb 1736  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-rex 2422  df-uni 3737  df-iota 5088  df-riota 5730 This theorem is referenced by:  riotabiia  5747  divfnzn  9425
 Copyright terms: Public domain W3C validator