Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  riotabiia GIF version

Theorem riotabiia 5787
 Description: Equivalent wff's yield equal restricted iotas (inference form). (rabbiia 2694 analog.) (Contributed by NM, 16-Jan-2012.)
Hypothesis
Ref Expression
riotabiia.1 (𝑥𝐴 → (𝜑𝜓))
Assertion
Ref Expression
riotabiia (𝑥𝐴 𝜑) = (𝑥𝐴 𝜓)

Proof of Theorem riotabiia
StepHypRef Expression
1 eqid 2154 . 2 V = V
2 riotabiia.1 . . . 4 (𝑥𝐴 → (𝜑𝜓))
32adantl 275 . . 3 ((V = V ∧ 𝑥𝐴) → (𝜑𝜓))
43riotabidva 5786 . 2 (V = V → (𝑥𝐴 𝜑) = (𝑥𝐴 𝜓))
51, 4ax-mp 5 1 (𝑥𝐴 𝜑) = (𝑥𝐴 𝜓)
 Colors of variables: wff set class Syntax hints:   → wi 4   ↔ wb 104   = wceq 1332   ∈ wcel 2125  Vcvv 2709  ℩crio 5769 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1481  ax-10 1482  ax-11 1483  ax-i12 1484  ax-bndl 1486  ax-4 1487  ax-17 1503  ax-i9 1507  ax-ial 1511  ax-i5r 1512  ax-ext 2136 This theorem depends on definitions:  df-bi 116  df-tru 1335  df-nf 1438  df-sb 1740  df-clab 2141  df-cleq 2147  df-clel 2150  df-nfc 2285  df-rex 2438  df-uni 3769  df-iota 5128  df-riota 5770 This theorem is referenced by:  caucvgsrlemfv  7690  dfgcd3  11866
 Copyright terms: Public domain W3C validator