ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  riotabiia GIF version

Theorem riotabiia 5891
Description: Equivalent wff's yield equal restricted iotas (inference form). (rabbiia 2745 analog.) (Contributed by NM, 16-Jan-2012.)
Hypothesis
Ref Expression
riotabiia.1 (𝑥𝐴 → (𝜑𝜓))
Assertion
Ref Expression
riotabiia (𝑥𝐴 𝜑) = (𝑥𝐴 𝜓)

Proof of Theorem riotabiia
StepHypRef Expression
1 eqid 2193 . 2 V = V
2 riotabiia.1 . . . 4 (𝑥𝐴 → (𝜑𝜓))
32adantl 277 . . 3 ((V = V ∧ 𝑥𝐴) → (𝜑𝜓))
43riotabidva 5890 . 2 (V = V → (𝑥𝐴 𝜑) = (𝑥𝐴 𝜓))
51, 4ax-mp 5 1 (𝑥𝐴 𝜑) = (𝑥𝐴 𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1364  wcel 2164  Vcvv 2760  crio 5872
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-rex 2478  df-uni 3836  df-iota 5215  df-riota 5873
This theorem is referenced by:  caucvgsrlemfv  7851  dfgcd3  12147
  Copyright terms: Public domain W3C validator