ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfgcd3 Unicode version

Theorem dfgcd3 11865
Description: Alternate definition of the  gcd operator. (Contributed by Jim Kingdon, 31-Dec-2021.)
Assertion
Ref Expression
dfgcd3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  gcd  N
)  =  ( iota_ d  e.  NN0  A. z  e.  ZZ  ( z  ||  d 
<->  ( z  ||  M  /\  z  ||  N ) ) ) )
Distinct variable groups:    M, d, z    N, d, z

Proof of Theorem dfgcd3
Dummy variables  a  b  r  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gcd0val 11816 . . 3  |-  ( 0  gcd  0 )  =  0
2 simprl 521 . . . 4  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =  0  /\  N  =  0 ) )  ->  M  =  0 )
3 simprr 522 . . . 4  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =  0  /\  N  =  0 ) )  ->  N  =  0 )
42, 3oveq12d 5832 . . 3  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =  0  /\  N  =  0 ) )  -> 
( M  gcd  N
)  =  ( 0  gcd  0 ) )
5 0nn0 9084 . . . . 5  |-  0  e.  NN0
65a1i 9 . . . 4  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =  0  /\  N  =  0 ) )  -> 
0  e.  NN0 )
7 0dvds 11680 . . . . . . . . . . 11  |-  ( M  e.  ZZ  ->  (
0  ||  M  <->  M  = 
0 ) )
87ad2antrr 480 . . . . . . . . . 10  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =  0  /\  N  =  0 ) )  -> 
( 0  ||  M  <->  M  =  0 ) )
92, 8mpbird 166 . . . . . . . . 9  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =  0  /\  N  =  0 ) )  -> 
0  ||  M )
10 0dvds 11680 . . . . . . . . . . 11  |-  ( N  e.  ZZ  ->  (
0  ||  N  <->  N  = 
0 ) )
1110ad2antlr 481 . . . . . . . . . 10  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =  0  /\  N  =  0 ) )  -> 
( 0  ||  N  <->  N  =  0 ) )
123, 11mpbird 166 . . . . . . . . 9  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =  0  /\  N  =  0 ) )  -> 
0  ||  N )
139, 12jca 304 . . . . . . . 8  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =  0  /\  N  =  0 ) )  -> 
( 0  ||  M  /\  0  ||  N ) )
1413ad2antrr 480 . . . . . . 7  |-  ( ( ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =  0  /\  N  =  0 ) )  /\  d  e. 
NN0 )  /\  A. z  e.  ZZ  (
z  ||  d  <->  ( z  ||  M  /\  z  ||  N ) ) )  ->  ( 0  ||  M  /\  0  ||  N
) )
15 0z 9157 . . . . . . . . 9  |-  0  e.  ZZ
16 breq1 3964 . . . . . . . . . . 11  |-  ( z  =  0  ->  (
z  ||  d  <->  0  ||  d ) )
17 breq1 3964 . . . . . . . . . . . 12  |-  ( z  =  0  ->  (
z  ||  M  <->  0  ||  M ) )
18 breq1 3964 . . . . . . . . . . . 12  |-  ( z  =  0  ->  (
z  ||  N  <->  0  ||  N ) )
1917, 18anbi12d 465 . . . . . . . . . . 11  |-  ( z  =  0  ->  (
( z  ||  M  /\  z  ||  N )  <-> 
( 0  ||  M  /\  0  ||  N ) ) )
2016, 19bibi12d 234 . . . . . . . . . 10  |-  ( z  =  0  ->  (
( z  ||  d  <->  ( z  ||  M  /\  z  ||  N ) )  <-> 
( 0  ||  d  <->  ( 0  ||  M  /\  0  ||  N ) ) ) )
2120rspcv 2809 . . . . . . . . 9  |-  ( 0  e.  ZZ  ->  ( A. z  e.  ZZ  ( z  ||  d  <->  ( z  ||  M  /\  z  ||  N ) )  ->  ( 0  ||  d 
<->  ( 0  ||  M  /\  0  ||  N ) ) ) )
2215, 21ax-mp 5 . . . . . . . 8  |-  ( A. z  e.  ZZ  (
z  ||  d  <->  ( z  ||  M  /\  z  ||  N ) )  -> 
( 0  ||  d  <->  ( 0  ||  M  /\  0  ||  N ) ) )
2322adantl 275 . . . . . . 7  |-  ( ( ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =  0  /\  N  =  0 ) )  /\  d  e. 
NN0 )  /\  A. z  e.  ZZ  (
z  ||  d  <->  ( z  ||  M  /\  z  ||  N ) ) )  ->  ( 0  ||  d 
<->  ( 0  ||  M  /\  0  ||  N ) ) )
2414, 23mpbird 166 . . . . . 6  |-  ( ( ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =  0  /\  N  =  0 ) )  /\  d  e. 
NN0 )  /\  A. z  e.  ZZ  (
z  ||  d  <->  ( z  ||  M  /\  z  ||  N ) ) )  ->  0  ||  d
)
25 simplr 520 . . . . . . . 8  |-  ( ( ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =  0  /\  N  =  0 ) )  /\  d  e. 
NN0 )  /\  A. z  e.  ZZ  (
z  ||  d  <->  ( z  ||  M  /\  z  ||  N ) ) )  ->  d  e.  NN0 )
2625nn0zd 9263 . . . . . . 7  |-  ( ( ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =  0  /\  N  =  0 ) )  /\  d  e. 
NN0 )  /\  A. z  e.  ZZ  (
z  ||  d  <->  ( z  ||  M  /\  z  ||  N ) ) )  ->  d  e.  ZZ )
27 0dvds 11680 . . . . . . 7  |-  ( d  e.  ZZ  ->  (
0  ||  d  <->  d  = 
0 ) )
2826, 27syl 14 . . . . . 6  |-  ( ( ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =  0  /\  N  =  0 ) )  /\  d  e. 
NN0 )  /\  A. z  e.  ZZ  (
z  ||  d  <->  ( z  ||  M  /\  z  ||  N ) ) )  ->  ( 0  ||  d 
<->  d  =  0 ) )
2924, 28mpbid 146 . . . . 5  |-  ( ( ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =  0  /\  N  =  0 ) )  /\  d  e. 
NN0 )  /\  A. z  e.  ZZ  (
z  ||  d  <->  ( z  ||  M  /\  z  ||  N ) ) )  ->  d  =  0 )
30 dvds0 11675 . . . . . . . . 9  |-  ( z  e.  ZZ  ->  z  ||  0 )
3130adantl 275 . . . . . . . 8  |-  ( ( ( ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =  0  /\  N  =  0 ) )  /\  d  e.  NN0 )  /\  d  =  0 )  /\  z  e.  ZZ )  ->  z  ||  0 )
32 breq2 3965 . . . . . . . . 9  |-  ( d  =  0  ->  (
z  ||  d  <->  z  ||  0 ) )
3332ad2antlr 481 . . . . . . . 8  |-  ( ( ( ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =  0  /\  N  =  0 ) )  /\  d  e.  NN0 )  /\  d  =  0 )  /\  z  e.  ZZ )  ->  ( z  ||  d  <->  z 
||  0 ) )
3431, 33mpbird 166 . . . . . . 7  |-  ( ( ( ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =  0  /\  N  =  0 ) )  /\  d  e.  NN0 )  /\  d  =  0 )  /\  z  e.  ZZ )  ->  z  ||  d )
352ad3antrrr 484 . . . . . . . . 9  |-  ( ( ( ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =  0  /\  N  =  0 ) )  /\  d  e.  NN0 )  /\  d  =  0 )  /\  z  e.  ZZ )  ->  M  =  0 )
3631, 35breqtrrd 3988 . . . . . . . 8  |-  ( ( ( ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =  0  /\  N  =  0 ) )  /\  d  e.  NN0 )  /\  d  =  0 )  /\  z  e.  ZZ )  ->  z  ||  M )
373ad3antrrr 484 . . . . . . . . 9  |-  ( ( ( ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =  0  /\  N  =  0 ) )  /\  d  e.  NN0 )  /\  d  =  0 )  /\  z  e.  ZZ )  ->  N  =  0 )
3831, 37breqtrrd 3988 . . . . . . . 8  |-  ( ( ( ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =  0  /\  N  =  0 ) )  /\  d  e.  NN0 )  /\  d  =  0 )  /\  z  e.  ZZ )  ->  z  ||  N )
3936, 38jca 304 . . . . . . 7  |-  ( ( ( ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =  0  /\  N  =  0 ) )  /\  d  e.  NN0 )  /\  d  =  0 )  /\  z  e.  ZZ )  ->  ( z  ||  M  /\  z  ||  N ) )
4034, 392thd 174 . . . . . 6  |-  ( ( ( ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =  0  /\  N  =  0 ) )  /\  d  e.  NN0 )  /\  d  =  0 )  /\  z  e.  ZZ )  ->  ( z  ||  d  <->  ( z  ||  M  /\  z  ||  N ) ) )
4140ralrimiva 2527 . . . . 5  |-  ( ( ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =  0  /\  N  =  0 ) )  /\  d  e. 
NN0 )  /\  d  =  0 )  ->  A. z  e.  ZZ  ( z  ||  d  <->  ( z  ||  M  /\  z  ||  N ) ) )
4229, 41impbida 586 . . . 4  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =  0  /\  N  =  0 ) )  /\  d  e. 
NN0 )  ->  ( A. z  e.  ZZ  ( z  ||  d  <->  ( z  ||  M  /\  z  ||  N ) )  <-> 
d  =  0 ) )
436, 42riota5 5795 . . 3  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =  0  /\  N  =  0 ) )  -> 
( iota_ d  e.  NN0  A. z  e.  ZZ  (
z  ||  d  <->  ( z  ||  M  /\  z  ||  N ) ) )  =  0 )
441, 4, 433eqtr4a 2213 . 2  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =  0  /\  N  =  0 ) )  -> 
( M  gcd  N
)  =  ( iota_ d  e.  NN0  A. z  e.  ZZ  ( z  ||  d 
<->  ( z  ||  M  /\  z  ||  N ) ) ) )
45 bezoutlembi 11860 . . . . 5  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  E. r  e.  NN0  ( A. w  e.  ZZ  ( w  ||  r  <->  ( w  ||  M  /\  w  ||  N ) )  /\  E. a  e.  ZZ  E. b  e.  ZZ  r  =  ( ( M  x.  a )  +  ( N  x.  b
) ) ) )
46 simpl 108 . . . . . 6  |-  ( ( A. w  e.  ZZ  ( w  ||  r  <->  ( w  ||  M  /\  w  ||  N ) )  /\  E. a  e.  ZZ  E. b  e.  ZZ  r  =  ( ( M  x.  a )  +  ( N  x.  b
) ) )  ->  A. w  e.  ZZ  ( w  ||  r  <->  ( w  ||  M  /\  w  ||  N ) ) )
4746reximi 2551 . . . . 5  |-  ( E. r  e.  NN0  ( A. w  e.  ZZ  ( w  ||  r  <->  ( w  ||  M  /\  w  ||  N ) )  /\  E. a  e.  ZZ  E. b  e.  ZZ  r  =  ( ( M  x.  a )  +  ( N  x.  b
) ) )  ->  E. r  e.  NN0  A. w  e.  ZZ  (
w  ||  r  <->  ( w  ||  M  /\  w  ||  N ) ) )
4845, 47syl 14 . . . 4  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  E. r  e.  NN0  A. w  e.  ZZ  (
w  ||  r  <->  ( w  ||  M  /\  w  ||  N ) ) )
4948adantr 274 . . 3  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  /\  N  =  0 ) )  ->  E. r  e.  NN0  A. w  e.  ZZ  (
w  ||  r  <->  ( w  ||  M  /\  w  ||  N ) ) )
50 simplll 523 . . . . 5  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  /\  N  =  0
) )  /\  (
r  e.  NN0  /\  A. w  e.  ZZ  (
w  ||  r  <->  ( w  ||  M  /\  w  ||  N ) ) ) )  ->  M  e.  ZZ )
51 simpllr 524 . . . . 5  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  /\  N  =  0
) )  /\  (
r  e.  NN0  /\  A. w  e.  ZZ  (
w  ||  r  <->  ( w  ||  M  /\  w  ||  N ) ) ) )  ->  N  e.  ZZ )
52 simprl 521 . . . . 5  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  /\  N  =  0
) )  /\  (
r  e.  NN0  /\  A. w  e.  ZZ  (
w  ||  r  <->  ( w  ||  M  /\  w  ||  N ) ) ) )  ->  r  e.  NN0 )
53 breq1 3964 . . . . . . . . 9  |-  ( w  =  z  ->  (
w  ||  r  <->  z  ||  r ) )
54 breq1 3964 . . . . . . . . . 10  |-  ( w  =  z  ->  (
w  ||  M  <->  z  ||  M ) )
55 breq1 3964 . . . . . . . . . 10  |-  ( w  =  z  ->  (
w  ||  N  <->  z  ||  N ) )
5654, 55anbi12d 465 . . . . . . . . 9  |-  ( w  =  z  ->  (
( w  ||  M  /\  w  ||  N )  <-> 
( z  ||  M  /\  z  ||  N ) ) )
5753, 56bibi12d 234 . . . . . . . 8  |-  ( w  =  z  ->  (
( w  ||  r  <->  ( w  ||  M  /\  w  ||  N ) )  <-> 
( z  ||  r  <->  ( z  ||  M  /\  z  ||  N ) ) ) )
5857cbvralv 2677 . . . . . . 7  |-  ( A. w  e.  ZZ  (
w  ||  r  <->  ( w  ||  M  /\  w  ||  N ) )  <->  A. z  e.  ZZ  ( z  ||  r 
<->  ( z  ||  M  /\  z  ||  N ) ) )
5958biimpi 119 . . . . . 6  |-  ( A. w  e.  ZZ  (
w  ||  r  <->  ( w  ||  M  /\  w  ||  N ) )  ->  A. z  e.  ZZ  ( z  ||  r  <->  ( z  ||  M  /\  z  ||  N ) ) )
6059ad2antll 483 . . . . 5  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  /\  N  =  0
) )  /\  (
r  e.  NN0  /\  A. w  e.  ZZ  (
w  ||  r  <->  ( w  ||  M  /\  w  ||  N ) ) ) )  ->  A. z  e.  ZZ  ( z  ||  r 
<->  ( z  ||  M  /\  z  ||  N ) ) )
61 simplr 520 . . . . 5  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  /\  N  =  0
) )  /\  (
r  e.  NN0  /\  A. w  e.  ZZ  (
w  ||  r  <->  ( w  ||  M  /\  w  ||  N ) ) ) )  ->  -.  ( M  =  0  /\  N  =  0 ) )
6250, 51, 52, 60, 61bezoutlemsup 11864 . . . 4  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  /\  N  =  0
) )  /\  (
r  e.  NN0  /\  A. w  e.  ZZ  (
w  ||  r  <->  ( w  ||  M  /\  w  ||  N ) ) ) )  ->  r  =  sup ( { z  e.  ZZ  |  ( z 
||  M  /\  z  ||  N ) } ,  RR ,  <  ) )
63 breq1 3964 . . . . . . . . 9  |-  ( w  =  z  ->  (
w  ||  d  <->  z  ||  d ) )
6463, 56bibi12d 234 . . . . . . . 8  |-  ( w  =  z  ->  (
( w  ||  d  <->  ( w  ||  M  /\  w  ||  N ) )  <-> 
( z  ||  d  <->  ( z  ||  M  /\  z  ||  N ) ) ) )
6564cbvralv 2677 . . . . . . 7  |-  ( A. w  e.  ZZ  (
w  ||  d  <->  ( w  ||  M  /\  w  ||  N ) )  <->  A. z  e.  ZZ  ( z  ||  d 
<->  ( z  ||  M  /\  z  ||  N ) ) )
6665a1i 9 . . . . . 6  |-  ( d  e.  NN0  ->  ( A. w  e.  ZZ  (
w  ||  d  <->  ( w  ||  M  /\  w  ||  N ) )  <->  A. z  e.  ZZ  ( z  ||  d 
<->  ( z  ||  M  /\  z  ||  N ) ) ) )
6766riotabiia 5787 . . . . 5  |-  ( iota_ d  e.  NN0  A. w  e.  ZZ  ( w  ||  d 
<->  ( w  ||  M  /\  w  ||  N ) ) )  =  (
iota_ d  e.  NN0  A. z  e.  ZZ  (
z  ||  d  <->  ( z  ||  M  /\  z  ||  N ) ) )
68 simprr 522 . . . . . 6  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  /\  N  =  0
) )  /\  (
r  e.  NN0  /\  A. w  e.  ZZ  (
w  ||  r  <->  ( w  ||  M  /\  w  ||  N ) ) ) )  ->  A. w  e.  ZZ  ( w  ||  r 
<->  ( w  ||  M  /\  w  ||  N ) ) )
6950, 51, 52, 68bezoutlemeu 11862 . . . . . . 7  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  /\  N  =  0
) )  /\  (
r  e.  NN0  /\  A. w  e.  ZZ  (
w  ||  r  <->  ( w  ||  M  /\  w  ||  N ) ) ) )  ->  E! d  e.  NN0  A. w  e.  ZZ  ( w  ||  d 
<->  ( w  ||  M  /\  w  ||  N ) ) )
70 breq2 3965 . . . . . . . . . 10  |-  ( d  =  r  ->  (
w  ||  d  <->  w  ||  r
) )
7170bibi1d 232 . . . . . . . . 9  |-  ( d  =  r  ->  (
( w  ||  d  <->  ( w  ||  M  /\  w  ||  N ) )  <-> 
( w  ||  r  <->  ( w  ||  M  /\  w  ||  N ) ) ) )
7271ralbidv 2454 . . . . . . . 8  |-  ( d  =  r  ->  ( A. w  e.  ZZ  ( w  ||  d  <->  ( w  ||  M  /\  w  ||  N ) )  <->  A. w  e.  ZZ  ( w  ||  r 
<->  ( w  ||  M  /\  w  ||  N ) ) ) )
7372riota2 5792 . . . . . . 7  |-  ( ( r  e.  NN0  /\  E! d  e.  NN0  A. w  e.  ZZ  (
w  ||  d  <->  ( w  ||  M  /\  w  ||  N ) ) )  ->  ( A. w  e.  ZZ  ( w  ||  r 
<->  ( w  ||  M  /\  w  ||  N ) )  <->  ( iota_ d  e. 
NN0  A. w  e.  ZZ  ( w  ||  d  <->  ( w  ||  M  /\  w  ||  N ) ) )  =  r ) )
7452, 69, 73syl2anc 409 . . . . . 6  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  /\  N  =  0
) )  /\  (
r  e.  NN0  /\  A. w  e.  ZZ  (
w  ||  r  <->  ( w  ||  M  /\  w  ||  N ) ) ) )  ->  ( A. w  e.  ZZ  (
w  ||  r  <->  ( w  ||  M  /\  w  ||  N ) )  <->  ( iota_ d  e.  NN0  A. w  e.  ZZ  ( w  ||  d 
<->  ( w  ||  M  /\  w  ||  N ) ) )  =  r ) )
7568, 74mpbid 146 . . . . 5  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  /\  N  =  0
) )  /\  (
r  e.  NN0  /\  A. w  e.  ZZ  (
w  ||  r  <->  ( w  ||  M  /\  w  ||  N ) ) ) )  ->  ( iota_ d  e.  NN0  A. w  e.  ZZ  ( w  ||  d 
<->  ( w  ||  M  /\  w  ||  N ) ) )  =  r )
7667, 75syl5eqr 2201 . . . 4  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  /\  N  =  0
) )  /\  (
r  e.  NN0  /\  A. w  e.  ZZ  (
w  ||  r  <->  ( w  ||  M  /\  w  ||  N ) ) ) )  ->  ( iota_ d  e.  NN0  A. z  e.  ZZ  ( z  ||  d 
<->  ( z  ||  M  /\  z  ||  N ) ) )  =  r )
77 gcdn0val 11817 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  /\  N  =  0 ) )  ->  ( M  gcd  N )  =  sup ( { z  e.  ZZ  |  ( z  ||  M  /\  z  ||  N
) } ,  RR ,  <  ) )
7877adantr 274 . . . 4  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  /\  N  =  0
) )  /\  (
r  e.  NN0  /\  A. w  e.  ZZ  (
w  ||  r  <->  ( w  ||  M  /\  w  ||  N ) ) ) )  ->  ( M  gcd  N )  =  sup ( { z  e.  ZZ  |  ( z  ||  M  /\  z  ||  N
) } ,  RR ,  <  ) )
7962, 76, 783eqtr4rd 2198 . . 3  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  /\  N  =  0
) )  /\  (
r  e.  NN0  /\  A. w  e.  ZZ  (
w  ||  r  <->  ( w  ||  M  /\  w  ||  N ) ) ) )  ->  ( M  gcd  N )  =  (
iota_ d  e.  NN0  A. z  e.  ZZ  (
z  ||  d  <->  ( z  ||  M  /\  z  ||  N ) ) ) )
8049, 79rexlimddv 2576 . 2  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  /\  N  =  0 ) )  ->  ( M  gcd  N )  =  ( iota_ d  e.  NN0  A. z  e.  ZZ  ( z  ||  d 
<->  ( z  ||  M  /\  z  ||  N ) ) ) )
81 gcdmndc 11804 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  -> DECID  ( M  =  0  /\  N  =  0 ) )
82 exmiddc 822 . . 3  |-  (DECID  ( M  =  0  /\  N  =  0 )  -> 
( ( M  =  0  /\  N  =  0 )  \/  -.  ( M  =  0  /\  N  =  0
) ) )
8381, 82syl 14 . 2  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( M  =  0  /\  N  =  0 )  \/  -.  ( M  =  0  /\  N  =  0
) ) )
8444, 80, 83mpjaodan 788 1  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  gcd  N
)  =  ( iota_ d  e.  NN0  A. z  e.  ZZ  ( z  ||  d 
<->  ( z  ||  M  /\  z  ||  N ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 698  DECID wdc 820    = wceq 1332    e. wcel 2125   A.wral 2432   E.wrex 2433   E!wreu 2434   {crab 2436   class class class wbr 3961   iota_crio 5769  (class class class)co 5814   supcsup 6914   RRcr 7710   0cc0 7711    + caddc 7714    x. cmul 7716    < clt 7891   NN0cn0 9069   ZZcz 9146    || cdvds 11660    gcd cgcd 11802
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1481  ax-10 1482  ax-11 1483  ax-i12 1484  ax-bndl 1486  ax-4 1487  ax-17 1503  ax-i9 1507  ax-ial 1511  ax-i5r 1512  ax-13 2127  ax-14 2128  ax-ext 2136  ax-coll 4075  ax-sep 4078  ax-nul 4086  ax-pow 4130  ax-pr 4164  ax-un 4388  ax-setind 4490  ax-iinf 4541  ax-cnex 7802  ax-resscn 7803  ax-1cn 7804  ax-1re 7805  ax-icn 7806  ax-addcl 7807  ax-addrcl 7808  ax-mulcl 7809  ax-mulrcl 7810  ax-addcom 7811  ax-mulcom 7812  ax-addass 7813  ax-mulass 7814  ax-distr 7815  ax-i2m1 7816  ax-0lt1 7817  ax-1rid 7818  ax-0id 7819  ax-rnegex 7820  ax-precex 7821  ax-cnre 7822  ax-pre-ltirr 7823  ax-pre-ltwlin 7824  ax-pre-lttrn 7825  ax-pre-apti 7826  ax-pre-ltadd 7827  ax-pre-mulgt0 7828  ax-pre-mulext 7829  ax-arch 7830  ax-caucvg 7831
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1740  df-eu 2006  df-mo 2007  df-clab 2141  df-cleq 2147  df-clel 2150  df-nfc 2285  df-ne 2325  df-nel 2420  df-ral 2437  df-rex 2438  df-reu 2439  df-rmo 2440  df-rab 2441  df-v 2711  df-sbc 2934  df-csb 3028  df-dif 3100  df-un 3102  df-in 3104  df-ss 3111  df-nul 3391  df-if 3502  df-pw 3541  df-sn 3562  df-pr 3563  df-op 3565  df-uni 3769  df-int 3804  df-iun 3847  df-br 3962  df-opab 4022  df-mpt 4023  df-tr 4059  df-id 4248  df-po 4251  df-iso 4252  df-iord 4321  df-on 4323  df-ilim 4324  df-suc 4326  df-iom 4544  df-xp 4585  df-rel 4586  df-cnv 4587  df-co 4588  df-dm 4589  df-rn 4590  df-res 4591  df-ima 4592  df-iota 5128  df-fun 5165  df-fn 5166  df-f 5167  df-f1 5168  df-fo 5169  df-f1o 5170  df-fv 5171  df-riota 5770  df-ov 5817  df-oprab 5818  df-mpo 5819  df-1st 6078  df-2nd 6079  df-recs 6242  df-frec 6328  df-sup 6916  df-pnf 7893  df-mnf 7894  df-xr 7895  df-ltxr 7896  df-le 7897  df-sub 8027  df-neg 8028  df-reap 8429  df-ap 8436  df-div 8525  df-inn 8813  df-2 8871  df-3 8872  df-4 8873  df-n0 9070  df-z 9147  df-uz 9419  df-q 9507  df-rp 9539  df-fz 9891  df-fzo 10020  df-fl 10147  df-mod 10200  df-seqfrec 10323  df-exp 10397  df-cj 10719  df-re 10720  df-im 10721  df-rsqrt 10875  df-abs 10876  df-dvds 11661  df-gcd 11803
This theorem is referenced by:  bezout  11866
  Copyright terms: Public domain W3C validator