Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dfgcd3 | Unicode version |
Description: Alternate definition of the operator. (Contributed by Jim Kingdon, 31-Dec-2021.) |
Ref | Expression |
---|---|
dfgcd3 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gcd0val 11816 | . . 3 | |
2 | simprl 521 | . . . 4 | |
3 | simprr 522 | . . . 4 | |
4 | 2, 3 | oveq12d 5832 | . . 3 |
5 | 0nn0 9084 | . . . . 5 | |
6 | 5 | a1i 9 | . . . 4 |
7 | 0dvds 11680 | . . . . . . . . . . 11 | |
8 | 7 | ad2antrr 480 | . . . . . . . . . 10 |
9 | 2, 8 | mpbird 166 | . . . . . . . . 9 |
10 | 0dvds 11680 | . . . . . . . . . . 11 | |
11 | 10 | ad2antlr 481 | . . . . . . . . . 10 |
12 | 3, 11 | mpbird 166 | . . . . . . . . 9 |
13 | 9, 12 | jca 304 | . . . . . . . 8 |
14 | 13 | ad2antrr 480 | . . . . . . 7 |
15 | 0z 9157 | . . . . . . . . 9 | |
16 | breq1 3964 | . . . . . . . . . . 11 | |
17 | breq1 3964 | . . . . . . . . . . . 12 | |
18 | breq1 3964 | . . . . . . . . . . . 12 | |
19 | 17, 18 | anbi12d 465 | . . . . . . . . . . 11 |
20 | 16, 19 | bibi12d 234 | . . . . . . . . . 10 |
21 | 20 | rspcv 2809 | . . . . . . . . 9 |
22 | 15, 21 | ax-mp 5 | . . . . . . . 8 |
23 | 22 | adantl 275 | . . . . . . 7 |
24 | 14, 23 | mpbird 166 | . . . . . 6 |
25 | simplr 520 | . . . . . . . 8 | |
26 | 25 | nn0zd 9263 | . . . . . . 7 |
27 | 0dvds 11680 | . . . . . . 7 | |
28 | 26, 27 | syl 14 | . . . . . 6 |
29 | 24, 28 | mpbid 146 | . . . . 5 |
30 | dvds0 11675 | . . . . . . . . 9 | |
31 | 30 | adantl 275 | . . . . . . . 8 |
32 | breq2 3965 | . . . . . . . . 9 | |
33 | 32 | ad2antlr 481 | . . . . . . . 8 |
34 | 31, 33 | mpbird 166 | . . . . . . 7 |
35 | 2 | ad3antrrr 484 | . . . . . . . . 9 |
36 | 31, 35 | breqtrrd 3988 | . . . . . . . 8 |
37 | 3 | ad3antrrr 484 | . . . . . . . . 9 |
38 | 31, 37 | breqtrrd 3988 | . . . . . . . 8 |
39 | 36, 38 | jca 304 | . . . . . . 7 |
40 | 34, 39 | 2thd 174 | . . . . . 6 |
41 | 40 | ralrimiva 2527 | . . . . 5 |
42 | 29, 41 | impbida 586 | . . . 4 |
43 | 6, 42 | riota5 5795 | . . 3 |
44 | 1, 4, 43 | 3eqtr4a 2213 | . 2 |
45 | bezoutlembi 11860 | . . . . 5 | |
46 | simpl 108 | . . . . . 6 | |
47 | 46 | reximi 2551 | . . . . 5 |
48 | 45, 47 | syl 14 | . . . 4 |
49 | 48 | adantr 274 | . . 3 |
50 | simplll 523 | . . . . 5 | |
51 | simpllr 524 | . . . . 5 | |
52 | simprl 521 | . . . . 5 | |
53 | breq1 3964 | . . . . . . . . 9 | |
54 | breq1 3964 | . . . . . . . . . 10 | |
55 | breq1 3964 | . . . . . . . . . 10 | |
56 | 54, 55 | anbi12d 465 | . . . . . . . . 9 |
57 | 53, 56 | bibi12d 234 | . . . . . . . 8 |
58 | 57 | cbvralv 2677 | . . . . . . 7 |
59 | 58 | biimpi 119 | . . . . . 6 |
60 | 59 | ad2antll 483 | . . . . 5 |
61 | simplr 520 | . . . . 5 | |
62 | 50, 51, 52, 60, 61 | bezoutlemsup 11864 | . . . 4 |
63 | breq1 3964 | . . . . . . . . 9 | |
64 | 63, 56 | bibi12d 234 | . . . . . . . 8 |
65 | 64 | cbvralv 2677 | . . . . . . 7 |
66 | 65 | a1i 9 | . . . . . 6 |
67 | 66 | riotabiia 5787 | . . . . 5 |
68 | simprr 522 | . . . . . 6 | |
69 | 50, 51, 52, 68 | bezoutlemeu 11862 | . . . . . . 7 |
70 | breq2 3965 | . . . . . . . . . 10 | |
71 | 70 | bibi1d 232 | . . . . . . . . 9 |
72 | 71 | ralbidv 2454 | . . . . . . . 8 |
73 | 72 | riota2 5792 | . . . . . . 7 |
74 | 52, 69, 73 | syl2anc 409 | . . . . . 6 |
75 | 68, 74 | mpbid 146 | . . . . 5 |
76 | 67, 75 | syl5eqr 2201 | . . . 4 |
77 | gcdn0val 11817 | . . . . 5 | |
78 | 77 | adantr 274 | . . . 4 |
79 | 62, 76, 78 | 3eqtr4rd 2198 | . . 3 |
80 | 49, 79 | rexlimddv 2576 | . 2 |
81 | gcdmndc 11804 | . . 3 DECID | |
82 | exmiddc 822 | . . 3 DECID | |
83 | 81, 82 | syl 14 | . 2 |
84 | 44, 80, 83 | mpjaodan 788 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 wo 698 DECID wdc 820 wceq 1332 wcel 2125 wral 2432 wrex 2433 wreu 2434 crab 2436 class class class wbr 3961 crio 5769 (class class class)co 5814 csup 6914 cr 7710 cc0 7711 caddc 7714 cmul 7716 clt 7891 cn0 9069 cz 9146 cdvds 11660 cgcd 11802 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-10 1482 ax-11 1483 ax-i12 1484 ax-bndl 1486 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-13 2127 ax-14 2128 ax-ext 2136 ax-coll 4075 ax-sep 4078 ax-nul 4086 ax-pow 4130 ax-pr 4164 ax-un 4388 ax-setind 4490 ax-iinf 4541 ax-cnex 7802 ax-resscn 7803 ax-1cn 7804 ax-1re 7805 ax-icn 7806 ax-addcl 7807 ax-addrcl 7808 ax-mulcl 7809 ax-mulrcl 7810 ax-addcom 7811 ax-mulcom 7812 ax-addass 7813 ax-mulass 7814 ax-distr 7815 ax-i2m1 7816 ax-0lt1 7817 ax-1rid 7818 ax-0id 7819 ax-rnegex 7820 ax-precex 7821 ax-cnre 7822 ax-pre-ltirr 7823 ax-pre-ltwlin 7824 ax-pre-lttrn 7825 ax-pre-apti 7826 ax-pre-ltadd 7827 ax-pre-mulgt0 7828 ax-pre-mulext 7829 ax-arch 7830 ax-caucvg 7831 |
This theorem depends on definitions: df-bi 116 df-dc 821 df-3or 964 df-3an 965 df-tru 1335 df-fal 1338 df-nf 1438 df-sb 1740 df-eu 2006 df-mo 2007 df-clab 2141 df-cleq 2147 df-clel 2150 df-nfc 2285 df-ne 2325 df-nel 2420 df-ral 2437 df-rex 2438 df-reu 2439 df-rmo 2440 df-rab 2441 df-v 2711 df-sbc 2934 df-csb 3028 df-dif 3100 df-un 3102 df-in 3104 df-ss 3111 df-nul 3391 df-if 3502 df-pw 3541 df-sn 3562 df-pr 3563 df-op 3565 df-uni 3769 df-int 3804 df-iun 3847 df-br 3962 df-opab 4022 df-mpt 4023 df-tr 4059 df-id 4248 df-po 4251 df-iso 4252 df-iord 4321 df-on 4323 df-ilim 4324 df-suc 4326 df-iom 4544 df-xp 4585 df-rel 4586 df-cnv 4587 df-co 4588 df-dm 4589 df-rn 4590 df-res 4591 df-ima 4592 df-iota 5128 df-fun 5165 df-fn 5166 df-f 5167 df-f1 5168 df-fo 5169 df-f1o 5170 df-fv 5171 df-riota 5770 df-ov 5817 df-oprab 5818 df-mpo 5819 df-1st 6078 df-2nd 6079 df-recs 6242 df-frec 6328 df-sup 6916 df-pnf 7893 df-mnf 7894 df-xr 7895 df-ltxr 7896 df-le 7897 df-sub 8027 df-neg 8028 df-reap 8429 df-ap 8436 df-div 8525 df-inn 8813 df-2 8871 df-3 8872 df-4 8873 df-n0 9070 df-z 9147 df-uz 9419 df-q 9507 df-rp 9539 df-fz 9891 df-fzo 10020 df-fl 10147 df-mod 10200 df-seqfrec 10323 df-exp 10397 df-cj 10719 df-re 10720 df-im 10721 df-rsqrt 10875 df-abs 10876 df-dvds 11661 df-gcd 11803 |
This theorem is referenced by: bezout 11866 |
Copyright terms: Public domain | W3C validator |