ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfgcd3 Unicode version

Theorem dfgcd3 12331
Description: Alternate definition of the  gcd operator. (Contributed by Jim Kingdon, 31-Dec-2021.)
Assertion
Ref Expression
dfgcd3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  gcd  N
)  =  ( iota_ d  e.  NN0  A. z  e.  ZZ  ( z  ||  d 
<->  ( z  ||  M  /\  z  ||  N ) ) ) )
Distinct variable groups:    M, d, z    N, d, z

Proof of Theorem dfgcd3
Dummy variables  a  b  r  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gcd0val 12281 . . 3  |-  ( 0  gcd  0 )  =  0
2 simprl 529 . . . 4  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =  0  /\  N  =  0 ) )  ->  M  =  0 )
3 simprr 531 . . . 4  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =  0  /\  N  =  0 ) )  ->  N  =  0 )
42, 3oveq12d 5962 . . 3  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =  0  /\  N  =  0 ) )  -> 
( M  gcd  N
)  =  ( 0  gcd  0 ) )
5 0nn0 9310 . . . . 5  |-  0  e.  NN0
65a1i 9 . . . 4  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =  0  /\  N  =  0 ) )  -> 
0  e.  NN0 )
7 0dvds 12122 . . . . . . . . . . 11  |-  ( M  e.  ZZ  ->  (
0  ||  M  <->  M  = 
0 ) )
87ad2antrr 488 . . . . . . . . . 10  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =  0  /\  N  =  0 ) )  -> 
( 0  ||  M  <->  M  =  0 ) )
92, 8mpbird 167 . . . . . . . . 9  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =  0  /\  N  =  0 ) )  -> 
0  ||  M )
10 0dvds 12122 . . . . . . . . . . 11  |-  ( N  e.  ZZ  ->  (
0  ||  N  <->  N  = 
0 ) )
1110ad2antlr 489 . . . . . . . . . 10  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =  0  /\  N  =  0 ) )  -> 
( 0  ||  N  <->  N  =  0 ) )
123, 11mpbird 167 . . . . . . . . 9  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =  0  /\  N  =  0 ) )  -> 
0  ||  N )
139, 12jca 306 . . . . . . . 8  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =  0  /\  N  =  0 ) )  -> 
( 0  ||  M  /\  0  ||  N ) )
1413ad2antrr 488 . . . . . . 7  |-  ( ( ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =  0  /\  N  =  0 ) )  /\  d  e. 
NN0 )  /\  A. z  e.  ZZ  (
z  ||  d  <->  ( z  ||  M  /\  z  ||  N ) ) )  ->  ( 0  ||  M  /\  0  ||  N
) )
15 0z 9383 . . . . . . . . 9  |-  0  e.  ZZ
16 breq1 4047 . . . . . . . . . . 11  |-  ( z  =  0  ->  (
z  ||  d  <->  0  ||  d ) )
17 breq1 4047 . . . . . . . . . . . 12  |-  ( z  =  0  ->  (
z  ||  M  <->  0  ||  M ) )
18 breq1 4047 . . . . . . . . . . . 12  |-  ( z  =  0  ->  (
z  ||  N  <->  0  ||  N ) )
1917, 18anbi12d 473 . . . . . . . . . . 11  |-  ( z  =  0  ->  (
( z  ||  M  /\  z  ||  N )  <-> 
( 0  ||  M  /\  0  ||  N ) ) )
2016, 19bibi12d 235 . . . . . . . . . 10  |-  ( z  =  0  ->  (
( z  ||  d  <->  ( z  ||  M  /\  z  ||  N ) )  <-> 
( 0  ||  d  <->  ( 0  ||  M  /\  0  ||  N ) ) ) )
2120rspcv 2873 . . . . . . . . 9  |-  ( 0  e.  ZZ  ->  ( A. z  e.  ZZ  ( z  ||  d  <->  ( z  ||  M  /\  z  ||  N ) )  ->  ( 0  ||  d 
<->  ( 0  ||  M  /\  0  ||  N ) ) ) )
2215, 21ax-mp 5 . . . . . . . 8  |-  ( A. z  e.  ZZ  (
z  ||  d  <->  ( z  ||  M  /\  z  ||  N ) )  -> 
( 0  ||  d  <->  ( 0  ||  M  /\  0  ||  N ) ) )
2322adantl 277 . . . . . . 7  |-  ( ( ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =  0  /\  N  =  0 ) )  /\  d  e. 
NN0 )  /\  A. z  e.  ZZ  (
z  ||  d  <->  ( z  ||  M  /\  z  ||  N ) ) )  ->  ( 0  ||  d 
<->  ( 0  ||  M  /\  0  ||  N ) ) )
2414, 23mpbird 167 . . . . . 6  |-  ( ( ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =  0  /\  N  =  0 ) )  /\  d  e. 
NN0 )  /\  A. z  e.  ZZ  (
z  ||  d  <->  ( z  ||  M  /\  z  ||  N ) ) )  ->  0  ||  d
)
25 simplr 528 . . . . . . . 8  |-  ( ( ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =  0  /\  N  =  0 ) )  /\  d  e. 
NN0 )  /\  A. z  e.  ZZ  (
z  ||  d  <->  ( z  ||  M  /\  z  ||  N ) ) )  ->  d  e.  NN0 )
2625nn0zd 9493 . . . . . . 7  |-  ( ( ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =  0  /\  N  =  0 ) )  /\  d  e. 
NN0 )  /\  A. z  e.  ZZ  (
z  ||  d  <->  ( z  ||  M  /\  z  ||  N ) ) )  ->  d  e.  ZZ )
27 0dvds 12122 . . . . . . 7  |-  ( d  e.  ZZ  ->  (
0  ||  d  <->  d  = 
0 ) )
2826, 27syl 14 . . . . . 6  |-  ( ( ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =  0  /\  N  =  0 ) )  /\  d  e. 
NN0 )  /\  A. z  e.  ZZ  (
z  ||  d  <->  ( z  ||  M  /\  z  ||  N ) ) )  ->  ( 0  ||  d 
<->  d  =  0 ) )
2924, 28mpbid 147 . . . . 5  |-  ( ( ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =  0  /\  N  =  0 ) )  /\  d  e. 
NN0 )  /\  A. z  e.  ZZ  (
z  ||  d  <->  ( z  ||  M  /\  z  ||  N ) ) )  ->  d  =  0 )
30 dvds0 12117 . . . . . . . . 9  |-  ( z  e.  ZZ  ->  z  ||  0 )
3130adantl 277 . . . . . . . 8  |-  ( ( ( ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =  0  /\  N  =  0 ) )  /\  d  e.  NN0 )  /\  d  =  0 )  /\  z  e.  ZZ )  ->  z  ||  0 )
32 breq2 4048 . . . . . . . . 9  |-  ( d  =  0  ->  (
z  ||  d  <->  z  ||  0 ) )
3332ad2antlr 489 . . . . . . . 8  |-  ( ( ( ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =  0  /\  N  =  0 ) )  /\  d  e.  NN0 )  /\  d  =  0 )  /\  z  e.  ZZ )  ->  ( z  ||  d  <->  z 
||  0 ) )
3431, 33mpbird 167 . . . . . . 7  |-  ( ( ( ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =  0  /\  N  =  0 ) )  /\  d  e.  NN0 )  /\  d  =  0 )  /\  z  e.  ZZ )  ->  z  ||  d )
352ad3antrrr 492 . . . . . . . . 9  |-  ( ( ( ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =  0  /\  N  =  0 ) )  /\  d  e.  NN0 )  /\  d  =  0 )  /\  z  e.  ZZ )  ->  M  =  0 )
3631, 35breqtrrd 4072 . . . . . . . 8  |-  ( ( ( ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =  0  /\  N  =  0 ) )  /\  d  e.  NN0 )  /\  d  =  0 )  /\  z  e.  ZZ )  ->  z  ||  M )
373ad3antrrr 492 . . . . . . . . 9  |-  ( ( ( ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =  0  /\  N  =  0 ) )  /\  d  e.  NN0 )  /\  d  =  0 )  /\  z  e.  ZZ )  ->  N  =  0 )
3831, 37breqtrrd 4072 . . . . . . . 8  |-  ( ( ( ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =  0  /\  N  =  0 ) )  /\  d  e.  NN0 )  /\  d  =  0 )  /\  z  e.  ZZ )  ->  z  ||  N )
3936, 38jca 306 . . . . . . 7  |-  ( ( ( ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =  0  /\  N  =  0 ) )  /\  d  e.  NN0 )  /\  d  =  0 )  /\  z  e.  ZZ )  ->  ( z  ||  M  /\  z  ||  N ) )
4034, 392thd 175 . . . . . 6  |-  ( ( ( ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =  0  /\  N  =  0 ) )  /\  d  e.  NN0 )  /\  d  =  0 )  /\  z  e.  ZZ )  ->  ( z  ||  d  <->  ( z  ||  M  /\  z  ||  N ) ) )
4140ralrimiva 2579 . . . . 5  |-  ( ( ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =  0  /\  N  =  0 ) )  /\  d  e. 
NN0 )  /\  d  =  0 )  ->  A. z  e.  ZZ  ( z  ||  d  <->  ( z  ||  M  /\  z  ||  N ) ) )
4229, 41impbida 596 . . . 4  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =  0  /\  N  =  0 ) )  /\  d  e. 
NN0 )  ->  ( A. z  e.  ZZ  ( z  ||  d  <->  ( z  ||  M  /\  z  ||  N ) )  <-> 
d  =  0 ) )
436, 42riota5 5925 . . 3  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =  0  /\  N  =  0 ) )  -> 
( iota_ d  e.  NN0  A. z  e.  ZZ  (
z  ||  d  <->  ( z  ||  M  /\  z  ||  N ) ) )  =  0 )
441, 4, 433eqtr4a 2264 . 2  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =  0  /\  N  =  0 ) )  -> 
( M  gcd  N
)  =  ( iota_ d  e.  NN0  A. z  e.  ZZ  ( z  ||  d 
<->  ( z  ||  M  /\  z  ||  N ) ) ) )
45 bezoutlembi 12326 . . . . 5  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  E. r  e.  NN0  ( A. w  e.  ZZ  ( w  ||  r  <->  ( w  ||  M  /\  w  ||  N ) )  /\  E. a  e.  ZZ  E. b  e.  ZZ  r  =  ( ( M  x.  a )  +  ( N  x.  b
) ) ) )
46 simpl 109 . . . . . 6  |-  ( ( A. w  e.  ZZ  ( w  ||  r  <->  ( w  ||  M  /\  w  ||  N ) )  /\  E. a  e.  ZZ  E. b  e.  ZZ  r  =  ( ( M  x.  a )  +  ( N  x.  b
) ) )  ->  A. w  e.  ZZ  ( w  ||  r  <->  ( w  ||  M  /\  w  ||  N ) ) )
4746reximi 2603 . . . . 5  |-  ( E. r  e.  NN0  ( A. w  e.  ZZ  ( w  ||  r  <->  ( w  ||  M  /\  w  ||  N ) )  /\  E. a  e.  ZZ  E. b  e.  ZZ  r  =  ( ( M  x.  a )  +  ( N  x.  b
) ) )  ->  E. r  e.  NN0  A. w  e.  ZZ  (
w  ||  r  <->  ( w  ||  M  /\  w  ||  N ) ) )
4845, 47syl 14 . . . 4  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  E. r  e.  NN0  A. w  e.  ZZ  (
w  ||  r  <->  ( w  ||  M  /\  w  ||  N ) ) )
4948adantr 276 . . 3  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  /\  N  =  0 ) )  ->  E. r  e.  NN0  A. w  e.  ZZ  (
w  ||  r  <->  ( w  ||  M  /\  w  ||  N ) ) )
50 simplll 533 . . . . 5  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  /\  N  =  0
) )  /\  (
r  e.  NN0  /\  A. w  e.  ZZ  (
w  ||  r  <->  ( w  ||  M  /\  w  ||  N ) ) ) )  ->  M  e.  ZZ )
51 simpllr 534 . . . . 5  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  /\  N  =  0
) )  /\  (
r  e.  NN0  /\  A. w  e.  ZZ  (
w  ||  r  <->  ( w  ||  M  /\  w  ||  N ) ) ) )  ->  N  e.  ZZ )
52 simprl 529 . . . . 5  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  /\  N  =  0
) )  /\  (
r  e.  NN0  /\  A. w  e.  ZZ  (
w  ||  r  <->  ( w  ||  M  /\  w  ||  N ) ) ) )  ->  r  e.  NN0 )
53 breq1 4047 . . . . . . . . 9  |-  ( w  =  z  ->  (
w  ||  r  <->  z  ||  r ) )
54 breq1 4047 . . . . . . . . . 10  |-  ( w  =  z  ->  (
w  ||  M  <->  z  ||  M ) )
55 breq1 4047 . . . . . . . . . 10  |-  ( w  =  z  ->  (
w  ||  N  <->  z  ||  N ) )
5654, 55anbi12d 473 . . . . . . . . 9  |-  ( w  =  z  ->  (
( w  ||  M  /\  w  ||  N )  <-> 
( z  ||  M  /\  z  ||  N ) ) )
5753, 56bibi12d 235 . . . . . . . 8  |-  ( w  =  z  ->  (
( w  ||  r  <->  ( w  ||  M  /\  w  ||  N ) )  <-> 
( z  ||  r  <->  ( z  ||  M  /\  z  ||  N ) ) ) )
5857cbvralv 2738 . . . . . . 7  |-  ( A. w  e.  ZZ  (
w  ||  r  <->  ( w  ||  M  /\  w  ||  N ) )  <->  A. z  e.  ZZ  ( z  ||  r 
<->  ( z  ||  M  /\  z  ||  N ) ) )
5958biimpi 120 . . . . . 6  |-  ( A. w  e.  ZZ  (
w  ||  r  <->  ( w  ||  M  /\  w  ||  N ) )  ->  A. z  e.  ZZ  ( z  ||  r  <->  ( z  ||  M  /\  z  ||  N ) ) )
6059ad2antll 491 . . . . 5  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  /\  N  =  0
) )  /\  (
r  e.  NN0  /\  A. w  e.  ZZ  (
w  ||  r  <->  ( w  ||  M  /\  w  ||  N ) ) ) )  ->  A. z  e.  ZZ  ( z  ||  r 
<->  ( z  ||  M  /\  z  ||  N ) ) )
61 simplr 528 . . . . 5  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  /\  N  =  0
) )  /\  (
r  e.  NN0  /\  A. w  e.  ZZ  (
w  ||  r  <->  ( w  ||  M  /\  w  ||  N ) ) ) )  ->  -.  ( M  =  0  /\  N  =  0 ) )
6250, 51, 52, 60, 61bezoutlemsup 12330 . . . 4  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  /\  N  =  0
) )  /\  (
r  e.  NN0  /\  A. w  e.  ZZ  (
w  ||  r  <->  ( w  ||  M  /\  w  ||  N ) ) ) )  ->  r  =  sup ( { z  e.  ZZ  |  ( z 
||  M  /\  z  ||  N ) } ,  RR ,  <  ) )
63 breq1 4047 . . . . . . . . 9  |-  ( w  =  z  ->  (
w  ||  d  <->  z  ||  d ) )
6463, 56bibi12d 235 . . . . . . . 8  |-  ( w  =  z  ->  (
( w  ||  d  <->  ( w  ||  M  /\  w  ||  N ) )  <-> 
( z  ||  d  <->  ( z  ||  M  /\  z  ||  N ) ) ) )
6564cbvralv 2738 . . . . . . 7  |-  ( A. w  e.  ZZ  (
w  ||  d  <->  ( w  ||  M  /\  w  ||  N ) )  <->  A. z  e.  ZZ  ( z  ||  d 
<->  ( z  ||  M  /\  z  ||  N ) ) )
6665a1i 9 . . . . . 6  |-  ( d  e.  NN0  ->  ( A. w  e.  ZZ  (
w  ||  d  <->  ( w  ||  M  /\  w  ||  N ) )  <->  A. z  e.  ZZ  ( z  ||  d 
<->  ( z  ||  M  /\  z  ||  N ) ) ) )
6766riotabiia 5917 . . . . 5  |-  ( iota_ d  e.  NN0  A. w  e.  ZZ  ( w  ||  d 
<->  ( w  ||  M  /\  w  ||  N ) ) )  =  (
iota_ d  e.  NN0  A. z  e.  ZZ  (
z  ||  d  <->  ( z  ||  M  /\  z  ||  N ) ) )
68 simprr 531 . . . . . 6  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  /\  N  =  0
) )  /\  (
r  e.  NN0  /\  A. w  e.  ZZ  (
w  ||  r  <->  ( w  ||  M  /\  w  ||  N ) ) ) )  ->  A. w  e.  ZZ  ( w  ||  r 
<->  ( w  ||  M  /\  w  ||  N ) ) )
6950, 51, 52, 68bezoutlemeu 12328 . . . . . . 7  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  /\  N  =  0
) )  /\  (
r  e.  NN0  /\  A. w  e.  ZZ  (
w  ||  r  <->  ( w  ||  M  /\  w  ||  N ) ) ) )  ->  E! d  e.  NN0  A. w  e.  ZZ  ( w  ||  d 
<->  ( w  ||  M  /\  w  ||  N ) ) )
70 breq2 4048 . . . . . . . . . 10  |-  ( d  =  r  ->  (
w  ||  d  <->  w  ||  r
) )
7170bibi1d 233 . . . . . . . . 9  |-  ( d  =  r  ->  (
( w  ||  d  <->  ( w  ||  M  /\  w  ||  N ) )  <-> 
( w  ||  r  <->  ( w  ||  M  /\  w  ||  N ) ) ) )
7271ralbidv 2506 . . . . . . . 8  |-  ( d  =  r  ->  ( A. w  e.  ZZ  ( w  ||  d  <->  ( w  ||  M  /\  w  ||  N ) )  <->  A. w  e.  ZZ  ( w  ||  r 
<->  ( w  ||  M  /\  w  ||  N ) ) ) )
7372riota2 5922 . . . . . . 7  |-  ( ( r  e.  NN0  /\  E! d  e.  NN0  A. w  e.  ZZ  (
w  ||  d  <->  ( w  ||  M  /\  w  ||  N ) ) )  ->  ( A. w  e.  ZZ  ( w  ||  r 
<->  ( w  ||  M  /\  w  ||  N ) )  <->  ( iota_ d  e. 
NN0  A. w  e.  ZZ  ( w  ||  d  <->  ( w  ||  M  /\  w  ||  N ) ) )  =  r ) )
7452, 69, 73syl2anc 411 . . . . . 6  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  /\  N  =  0
) )  /\  (
r  e.  NN0  /\  A. w  e.  ZZ  (
w  ||  r  <->  ( w  ||  M  /\  w  ||  N ) ) ) )  ->  ( A. w  e.  ZZ  (
w  ||  r  <->  ( w  ||  M  /\  w  ||  N ) )  <->  ( iota_ d  e.  NN0  A. w  e.  ZZ  ( w  ||  d 
<->  ( w  ||  M  /\  w  ||  N ) ) )  =  r ) )
7568, 74mpbid 147 . . . . 5  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  /\  N  =  0
) )  /\  (
r  e.  NN0  /\  A. w  e.  ZZ  (
w  ||  r  <->  ( w  ||  M  /\  w  ||  N ) ) ) )  ->  ( iota_ d  e.  NN0  A. w  e.  ZZ  ( w  ||  d 
<->  ( w  ||  M  /\  w  ||  N ) ) )  =  r )
7667, 75eqtr3id 2252 . . . 4  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  /\  N  =  0
) )  /\  (
r  e.  NN0  /\  A. w  e.  ZZ  (
w  ||  r  <->  ( w  ||  M  /\  w  ||  N ) ) ) )  ->  ( iota_ d  e.  NN0  A. z  e.  ZZ  ( z  ||  d 
<->  ( z  ||  M  /\  z  ||  N ) ) )  =  r )
77 gcdn0val 12282 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  /\  N  =  0 ) )  ->  ( M  gcd  N )  =  sup ( { z  e.  ZZ  |  ( z  ||  M  /\  z  ||  N
) } ,  RR ,  <  ) )
7877adantr 276 . . . 4  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  /\  N  =  0
) )  /\  (
r  e.  NN0  /\  A. w  e.  ZZ  (
w  ||  r  <->  ( w  ||  M  /\  w  ||  N ) ) ) )  ->  ( M  gcd  N )  =  sup ( { z  e.  ZZ  |  ( z  ||  M  /\  z  ||  N
) } ,  RR ,  <  ) )
7962, 76, 783eqtr4rd 2249 . . 3  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  /\  N  =  0
) )  /\  (
r  e.  NN0  /\  A. w  e.  ZZ  (
w  ||  r  <->  ( w  ||  M  /\  w  ||  N ) ) ) )  ->  ( M  gcd  N )  =  (
iota_ d  e.  NN0  A. z  e.  ZZ  (
z  ||  d  <->  ( z  ||  M  /\  z  ||  N ) ) ) )
8049, 79rexlimddv 2628 . 2  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  /\  N  =  0 ) )  ->  ( M  gcd  N )  =  ( iota_ d  e.  NN0  A. z  e.  ZZ  ( z  ||  d 
<->  ( z  ||  M  /\  z  ||  N ) ) ) )
81 gcdmndc 12276 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  -> DECID  ( M  =  0  /\  N  =  0 ) )
82 exmiddc 838 . . 3  |-  (DECID  ( M  =  0  /\  N  =  0 )  -> 
( ( M  =  0  /\  N  =  0 )  \/  -.  ( M  =  0  /\  N  =  0
) ) )
8381, 82syl 14 . 2  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( M  =  0  /\  N  =  0 )  \/  -.  ( M  =  0  /\  N  =  0
) ) )
8444, 80, 83mpjaodan 800 1  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  gcd  N
)  =  ( iota_ d  e.  NN0  A. z  e.  ZZ  ( z  ||  d 
<->  ( z  ||  M  /\  z  ||  N ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 710  DECID wdc 836    = wceq 1373    e. wcel 2176   A.wral 2484   E.wrex 2485   E!wreu 2486   {crab 2488   class class class wbr 4044   iota_crio 5898  (class class class)co 5944   supcsup 7084   RRcr 7924   0cc0 7925    + caddc 7928    x. cmul 7930    < clt 8107   NN0cn0 9295   ZZcz 9372    || cdvds 12098    gcd cgcd 12274
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-iinf 4636  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-mulrcl 8024  ax-addcom 8025  ax-mulcom 8026  ax-addass 8027  ax-mulass 8028  ax-distr 8029  ax-i2m1 8030  ax-0lt1 8031  ax-1rid 8032  ax-0id 8033  ax-rnegex 8034  ax-precex 8035  ax-cnre 8036  ax-pre-ltirr 8037  ax-pre-ltwlin 8038  ax-pre-lttrn 8039  ax-pre-apti 8040  ax-pre-ltadd 8041  ax-pre-mulgt0 8042  ax-pre-mulext 8043  ax-arch 8044  ax-caucvg 8045
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-tr 4143  df-id 4340  df-po 4343  df-iso 4344  df-iord 4413  df-on 4415  df-ilim 4416  df-suc 4418  df-iom 4639  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227  df-recs 6391  df-frec 6477  df-sup 7086  df-pnf 8109  df-mnf 8110  df-xr 8111  df-ltxr 8112  df-le 8113  df-sub 8245  df-neg 8246  df-reap 8648  df-ap 8655  df-div 8746  df-inn 9037  df-2 9095  df-3 9096  df-4 9097  df-n0 9296  df-z 9373  df-uz 9649  df-q 9741  df-rp 9776  df-fz 10131  df-fzo 10265  df-fl 10413  df-mod 10468  df-seqfrec 10593  df-exp 10684  df-cj 11153  df-re 11154  df-im 11155  df-rsqrt 11309  df-abs 11310  df-dvds 12099  df-gcd 12275
This theorem is referenced by:  bezout  12332
  Copyright terms: Public domain W3C validator