ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgsrlemfv Unicode version

Theorem caucvgsrlemfv 7939
Description: Lemma for caucvgsr 7950. Coercing sequence value from a positive real to a signed real. (Contributed by Jim Kingdon, 29-Jun-2021.)
Hypotheses
Ref Expression
caucvgsr.f  |-  ( ph  ->  F : N. --> R. )
caucvgsr.cau  |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  (
n  <N  k  ->  (
( F `  n
)  <R  ( ( F `
 k )  +R 
[ <. ( <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )  /\  ( F `  k )  <R  (
( F `  n
)  +R  [ <. (
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ) ) ) )
caucvgsrlemgt1.gt1  |-  ( ph  ->  A. m  e.  N.  1R  <R  ( F `  m ) )
caucvgsrlemf.xfr  |-  G  =  ( x  e.  N.  |->  ( iota_ y  e.  P.  ( F `  x )  =  [ <. (
y  +P.  1P ) ,  1P >. ]  ~R  )
)
Assertion
Ref Expression
caucvgsrlemfv  |-  ( (
ph  /\  A  e.  N. )  ->  [ <. ( ( G `  A
)  +P.  1P ) ,  1P >. ]  ~R  =  ( F `  A ) )
Distinct variable groups:    A, m    x, A, y    m, F    x, F, y    ph, x
Allowed substitution hints:    ph( y, u, k, m, n, l)    A( u, k, n, l)    F( u, k, n, l)    G( x, y, u, k, m, n, l)

Proof of Theorem caucvgsrlemfv
StepHypRef Expression
1 caucvgsrlemf.xfr . . . . . . 7  |-  G  =  ( x  e.  N.  |->  ( iota_ y  e.  P.  ( F `  x )  =  [ <. (
y  +P.  1P ) ,  1P >. ]  ~R  )
)
21a1i 9 . . . . . 6  |-  ( (
ph  /\  A  e.  N. )  ->  G  =  ( x  e.  N.  |->  ( iota_ y  e.  P.  ( F `  x )  =  [ <. (
y  +P.  1P ) ,  1P >. ]  ~R  )
) )
3 fveq2 5599 . . . . . . . . 9  |-  ( x  =  A  ->  ( F `  x )  =  ( F `  A ) )
43eqeq1d 2216 . . . . . . . 8  |-  ( x  =  A  ->  (
( F `  x
)  =  [ <. ( y  +P.  1P ) ,  1P >. ]  ~R  <->  ( F `  A )  =  [ <. (
y  +P.  1P ) ,  1P >. ]  ~R  )
)
54riotabidv 5924 . . . . . . 7  |-  ( x  =  A  ->  ( iota_ y  e.  P.  ( F `  x )  =  [ <. ( y  +P. 
1P ) ,  1P >. ]  ~R  )  =  ( iota_ y  e.  P.  ( F `  A )  =  [ <. (
y  +P.  1P ) ,  1P >. ]  ~R  )
)
65adantl 277 . . . . . 6  |-  ( ( ( ph  /\  A  e.  N. )  /\  x  =  A )  ->  ( iota_ y  e.  P.  ( F `  x )  =  [ <. ( y  +P. 
1P ) ,  1P >. ]  ~R  )  =  ( iota_ y  e.  P.  ( F `  A )  =  [ <. (
y  +P.  1P ) ,  1P >. ]  ~R  )
)
7 simpr 110 . . . . . 6  |-  ( (
ph  /\  A  e.  N. )  ->  A  e. 
N. )
8 caucvgsr.f . . . . . . 7  |-  ( ph  ->  F : N. --> R. )
9 caucvgsrlemgt1.gt1 . . . . . . 7  |-  ( ph  ->  A. m  e.  N.  1R  <R  ( F `  m ) )
108, 9caucvgsrlemcl 7937 . . . . . 6  |-  ( (
ph  /\  A  e.  N. )  ->  ( iota_ y  e.  P.  ( F `
 A )  =  [ <. ( y  +P. 
1P ) ,  1P >. ]  ~R  )  e. 
P. )
112, 6, 7, 10fvmptd 5683 . . . . 5  |-  ( (
ph  /\  A  e.  N. )  ->  ( G `
 A )  =  ( iota_ y  e.  P.  ( F `  A )  =  [ <. (
y  +P.  1P ) ,  1P >. ]  ~R  )
)
1211oveq1d 5982 . . . 4  |-  ( (
ph  /\  A  e.  N. )  ->  ( ( G `  A )  +P.  1P )  =  ( ( iota_ y  e. 
P.  ( F `  A )  =  [ <. ( y  +P.  1P ) ,  1P >. ]  ~R  )  +P.  1P ) )
1312opeq1d 3839 . . 3  |-  ( (
ph  /\  A  e.  N. )  ->  <. (
( G `  A
)  +P.  1P ) ,  1P >.  =  <. ( ( iota_ y  e.  P.  ( F `  A )  =  [ <. (
y  +P.  1P ) ,  1P >. ]  ~R  )  +P.  1P ) ,  1P >. )
1413eceq1d 6679 . 2  |-  ( (
ph  /\  A  e.  N. )  ->  [ <. ( ( G `  A
)  +P.  1P ) ,  1P >. ]  ~R  =  [ <. ( ( iota_ y  e.  P.  ( F `
 A )  =  [ <. ( y  +P. 
1P ) ,  1P >. ]  ~R  )  +P. 
1P ) ,  1P >. ]  ~R  )
15 eqcom 2209 . . . . . . 7  |-  ( ( F `  A )  =  [ <. (
y  +P.  1P ) ,  1P >. ]  ~R  <->  [ <. (
y  +P.  1P ) ,  1P >. ]  ~R  =  ( F `  A ) )
1615a1i 9 . . . . . 6  |-  ( y  e.  P.  ->  (
( F `  A
)  =  [ <. ( y  +P.  1P ) ,  1P >. ]  ~R  <->  [
<. ( y  +P.  1P ) ,  1P >. ]  ~R  =  ( F `  A ) ) )
1716riotabiia 5940 . . . . 5  |-  ( iota_ y  e.  P.  ( F `
 A )  =  [ <. ( y  +P. 
1P ) ,  1P >. ]  ~R  )  =  ( iota_ y  e.  P.  [
<. ( y  +P.  1P ) ,  1P >. ]  ~R  =  ( F `  A ) )
1817oveq1i 5977 . . . 4  |-  ( (
iota_ y  e.  P.  ( F `  A )  =  [ <. (
y  +P.  1P ) ,  1P >. ]  ~R  )  +P.  1P )  =  ( ( iota_ y  e.  P.  [
<. ( y  +P.  1P ) ,  1P >. ]  ~R  =  ( F `  A ) )  +P. 
1P )
1918opeq1i 3836 . . 3  |-  <. (
( iota_ y  e.  P.  ( F `  A )  =  [ <. (
y  +P.  1P ) ,  1P >. ]  ~R  )  +P.  1P ) ,  1P >.  =  <. ( ( iota_ y  e.  P.  [ <. ( y  +P.  1P ) ,  1P >. ]  ~R  =  ( F `  A ) )  +P. 
1P ) ,  1P >.
20 eceq1 6678 . . 3  |-  ( <.
( ( iota_ y  e. 
P.  ( F `  A )  =  [ <. ( y  +P.  1P ) ,  1P >. ]  ~R  )  +P.  1P ) ,  1P >.  =  <. ( ( iota_ y  e.  P.  [
<. ( y  +P.  1P ) ,  1P >. ]  ~R  =  ( F `  A ) )  +P. 
1P ) ,  1P >.  ->  [ <. (
( iota_ y  e.  P.  ( F `  A )  =  [ <. (
y  +P.  1P ) ,  1P >. ]  ~R  )  +P.  1P ) ,  1P >. ]  ~R  =  [ <. ( ( iota_ y  e. 
P.  [ <. (
y  +P.  1P ) ,  1P >. ]  ~R  =  ( F `  A ) )  +P.  1P ) ,  1P >. ]  ~R  )
2119, 20mp1i 10 . 2  |-  ( (
ph  /\  A  e.  N. )  ->  [ <. ( ( iota_ y  e.  P.  ( F `  A )  =  [ <. (
y  +P.  1P ) ,  1P >. ]  ~R  )  +P.  1P ) ,  1P >. ]  ~R  =  [ <. ( ( iota_ y  e. 
P.  [ <. (
y  +P.  1P ) ,  1P >. ]  ~R  =  ( F `  A ) )  +P.  1P ) ,  1P >. ]  ~R  )
228ffvelcdmda 5738 . . 3  |-  ( (
ph  /\  A  e.  N. )  ->  ( F `
 A )  e. 
R. )
23 0lt1sr 7913 . . . 4  |-  0R  <R  1R
24 fveq2 5599 . . . . . . 7  |-  ( m  =  A  ->  ( F `  m )  =  ( F `  A ) )
2524breq2d 4071 . . . . . 6  |-  ( m  =  A  ->  ( 1R  <R  ( F `  m )  <->  1R  <R  ( F `  A )
) )
2625rspcv 2880 . . . . 5  |-  ( A  e.  N.  ->  ( A. m  e.  N.  1R  <R  ( F `  m )  ->  1R  <R  ( F `  A
) ) )
279, 26mpan9 281 . . . 4  |-  ( (
ph  /\  A  e.  N. )  ->  1R  <R  ( F `  A ) )
28 ltsosr 7912 . . . . 5  |-  <R  Or  R.
29 ltrelsr 7886 . . . . 5  |-  <R  C_  ( R.  X.  R. )
3028, 29sotri 5097 . . . 4  |-  ( ( 0R  <R  1R  /\  1R  <R  ( F `  A
) )  ->  0R  <R  ( F `  A
) )
3123, 27, 30sylancr 414 . . 3  |-  ( (
ph  /\  A  e.  N. )  ->  0R  <R  ( F `  A ) )
32 prsrriota 7936 . . 3  |-  ( ( ( F `  A
)  e.  R.  /\  0R  <R  ( F `  A ) )  ->  [ <. ( ( iota_ y  e.  P.  [ <. ( y  +P.  1P ) ,  1P >. ]  ~R  =  ( F `  A ) )  +P. 
1P ) ,  1P >. ]  ~R  =  ( F `  A ) )
3322, 31, 32syl2anc 411 . 2  |-  ( (
ph  /\  A  e.  N. )  ->  [ <. ( ( iota_ y  e.  P.  [
<. ( y  +P.  1P ) ,  1P >. ]  ~R  =  ( F `  A ) )  +P. 
1P ) ,  1P >. ]  ~R  =  ( F `  A ) )
3414, 21, 333eqtrd 2244 1  |-  ( (
ph  /\  A  e.  N. )  ->  [ <. ( ( G `  A
)  +P.  1P ) ,  1P >. ]  ~R  =  ( F `  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2178   {cab 2193   A.wral 2486   <.cop 3646   class class class wbr 4059    |-> cmpt 4121   -->wf 5286   ` cfv 5290   iota_crio 5921  (class class class)co 5967   1oc1o 6518   [cec 6641   N.cnpi 7420    <N clti 7423    ~Q ceq 7427   *Qcrq 7432    <Q cltq 7433   P.cnp 7439   1Pc1p 7440    +P. cpp 7441    ~R cer 7444   R.cnr 7445   0Rc0r 7446   1Rc1r 7447    +R cplr 7449    <R cltr 7451
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-eprel 4354  df-id 4358  df-po 4361  df-iso 4362  df-iord 4431  df-on 4433  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-recs 6414  df-irdg 6479  df-1o 6525  df-2o 6526  df-oadd 6529  df-omul 6530  df-er 6643  df-ec 6645  df-qs 6649  df-ni 7452  df-pli 7453  df-mi 7454  df-lti 7455  df-plpq 7492  df-mpq 7493  df-enq 7495  df-nqqs 7496  df-plqqs 7497  df-mqqs 7498  df-1nqqs 7499  df-rq 7500  df-ltnqqs 7501  df-enq0 7572  df-nq0 7573  df-0nq0 7574  df-plq0 7575  df-mq0 7576  df-inp 7614  df-i1p 7615  df-iplp 7616  df-iltp 7618  df-enr 7874  df-nr 7875  df-ltr 7878  df-0r 7879  df-1r 7880
This theorem is referenced by:  caucvgsrlemcau  7941  caucvgsrlembound  7942  caucvgsrlemgt1  7943
  Copyright terms: Public domain W3C validator