ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgsrlemfv Unicode version

Theorem caucvgsrlemfv 7753
Description: Lemma for caucvgsr 7764. Coercing sequence value from a positive real to a signed real. (Contributed by Jim Kingdon, 29-Jun-2021.)
Hypotheses
Ref Expression
caucvgsr.f  |-  ( ph  ->  F : N. --> R. )
caucvgsr.cau  |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  (
n  <N  k  ->  (
( F `  n
)  <R  ( ( F `
 k )  +R 
[ <. ( <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )  /\  ( F `  k )  <R  (
( F `  n
)  +R  [ <. (
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ) ) ) )
caucvgsrlemgt1.gt1  |-  ( ph  ->  A. m  e.  N.  1R  <R  ( F `  m ) )
caucvgsrlemf.xfr  |-  G  =  ( x  e.  N.  |->  ( iota_ y  e.  P.  ( F `  x )  =  [ <. (
y  +P.  1P ) ,  1P >. ]  ~R  )
)
Assertion
Ref Expression
caucvgsrlemfv  |-  ( (
ph  /\  A  e.  N. )  ->  [ <. ( ( G `  A
)  +P.  1P ) ,  1P >. ]  ~R  =  ( F `  A ) )
Distinct variable groups:    A, m    x, A, y    m, F    x, F, y    ph, x
Allowed substitution hints:    ph( y, u, k, m, n, l)    A( u, k, n, l)    F( u, k, n, l)    G( x, y, u, k, m, n, l)

Proof of Theorem caucvgsrlemfv
StepHypRef Expression
1 caucvgsrlemf.xfr . . . . . . 7  |-  G  =  ( x  e.  N.  |->  ( iota_ y  e.  P.  ( F `  x )  =  [ <. (
y  +P.  1P ) ,  1P >. ]  ~R  )
)
21a1i 9 . . . . . 6  |-  ( (
ph  /\  A  e.  N. )  ->  G  =  ( x  e.  N.  |->  ( iota_ y  e.  P.  ( F `  x )  =  [ <. (
y  +P.  1P ) ,  1P >. ]  ~R  )
) )
3 fveq2 5496 . . . . . . . . 9  |-  ( x  =  A  ->  ( F `  x )  =  ( F `  A ) )
43eqeq1d 2179 . . . . . . . 8  |-  ( x  =  A  ->  (
( F `  x
)  =  [ <. ( y  +P.  1P ) ,  1P >. ]  ~R  <->  ( F `  A )  =  [ <. (
y  +P.  1P ) ,  1P >. ]  ~R  )
)
54riotabidv 5811 . . . . . . 7  |-  ( x  =  A  ->  ( iota_ y  e.  P.  ( F `  x )  =  [ <. ( y  +P. 
1P ) ,  1P >. ]  ~R  )  =  ( iota_ y  e.  P.  ( F `  A )  =  [ <. (
y  +P.  1P ) ,  1P >. ]  ~R  )
)
65adantl 275 . . . . . 6  |-  ( ( ( ph  /\  A  e.  N. )  /\  x  =  A )  ->  ( iota_ y  e.  P.  ( F `  x )  =  [ <. ( y  +P. 
1P ) ,  1P >. ]  ~R  )  =  ( iota_ y  e.  P.  ( F `  A )  =  [ <. (
y  +P.  1P ) ,  1P >. ]  ~R  )
)
7 simpr 109 . . . . . 6  |-  ( (
ph  /\  A  e.  N. )  ->  A  e. 
N. )
8 caucvgsr.f . . . . . . 7  |-  ( ph  ->  F : N. --> R. )
9 caucvgsrlemgt1.gt1 . . . . . . 7  |-  ( ph  ->  A. m  e.  N.  1R  <R  ( F `  m ) )
108, 9caucvgsrlemcl 7751 . . . . . 6  |-  ( (
ph  /\  A  e.  N. )  ->  ( iota_ y  e.  P.  ( F `
 A )  =  [ <. ( y  +P. 
1P ) ,  1P >. ]  ~R  )  e. 
P. )
112, 6, 7, 10fvmptd 5577 . . . . 5  |-  ( (
ph  /\  A  e.  N. )  ->  ( G `
 A )  =  ( iota_ y  e.  P.  ( F `  A )  =  [ <. (
y  +P.  1P ) ,  1P >. ]  ~R  )
)
1211oveq1d 5868 . . . 4  |-  ( (
ph  /\  A  e.  N. )  ->  ( ( G `  A )  +P.  1P )  =  ( ( iota_ y  e. 
P.  ( F `  A )  =  [ <. ( y  +P.  1P ) ,  1P >. ]  ~R  )  +P.  1P ) )
1312opeq1d 3771 . . 3  |-  ( (
ph  /\  A  e.  N. )  ->  <. (
( G `  A
)  +P.  1P ) ,  1P >.  =  <. ( ( iota_ y  e.  P.  ( F `  A )  =  [ <. (
y  +P.  1P ) ,  1P >. ]  ~R  )  +P.  1P ) ,  1P >. )
1413eceq1d 6549 . 2  |-  ( (
ph  /\  A  e.  N. )  ->  [ <. ( ( G `  A
)  +P.  1P ) ,  1P >. ]  ~R  =  [ <. ( ( iota_ y  e.  P.  ( F `
 A )  =  [ <. ( y  +P. 
1P ) ,  1P >. ]  ~R  )  +P. 
1P ) ,  1P >. ]  ~R  )
15 eqcom 2172 . . . . . . 7  |-  ( ( F `  A )  =  [ <. (
y  +P.  1P ) ,  1P >. ]  ~R  <->  [ <. (
y  +P.  1P ) ,  1P >. ]  ~R  =  ( F `  A ) )
1615a1i 9 . . . . . 6  |-  ( y  e.  P.  ->  (
( F `  A
)  =  [ <. ( y  +P.  1P ) ,  1P >. ]  ~R  <->  [
<. ( y  +P.  1P ) ,  1P >. ]  ~R  =  ( F `  A ) ) )
1716riotabiia 5826 . . . . 5  |-  ( iota_ y  e.  P.  ( F `
 A )  =  [ <. ( y  +P. 
1P ) ,  1P >. ]  ~R  )  =  ( iota_ y  e.  P.  [
<. ( y  +P.  1P ) ,  1P >. ]  ~R  =  ( F `  A ) )
1817oveq1i 5863 . . . 4  |-  ( (
iota_ y  e.  P.  ( F `  A )  =  [ <. (
y  +P.  1P ) ,  1P >. ]  ~R  )  +P.  1P )  =  ( ( iota_ y  e.  P.  [
<. ( y  +P.  1P ) ,  1P >. ]  ~R  =  ( F `  A ) )  +P. 
1P )
1918opeq1i 3768 . . 3  |-  <. (
( iota_ y  e.  P.  ( F `  A )  =  [ <. (
y  +P.  1P ) ,  1P >. ]  ~R  )  +P.  1P ) ,  1P >.  =  <. ( ( iota_ y  e.  P.  [ <. ( y  +P.  1P ) ,  1P >. ]  ~R  =  ( F `  A ) )  +P. 
1P ) ,  1P >.
20 eceq1 6548 . . 3  |-  ( <.
( ( iota_ y  e. 
P.  ( F `  A )  =  [ <. ( y  +P.  1P ) ,  1P >. ]  ~R  )  +P.  1P ) ,  1P >.  =  <. ( ( iota_ y  e.  P.  [
<. ( y  +P.  1P ) ,  1P >. ]  ~R  =  ( F `  A ) )  +P. 
1P ) ,  1P >.  ->  [ <. (
( iota_ y  e.  P.  ( F `  A )  =  [ <. (
y  +P.  1P ) ,  1P >. ]  ~R  )  +P.  1P ) ,  1P >. ]  ~R  =  [ <. ( ( iota_ y  e. 
P.  [ <. (
y  +P.  1P ) ,  1P >. ]  ~R  =  ( F `  A ) )  +P.  1P ) ,  1P >. ]  ~R  )
2119, 20mp1i 10 . 2  |-  ( (
ph  /\  A  e.  N. )  ->  [ <. ( ( iota_ y  e.  P.  ( F `  A )  =  [ <. (
y  +P.  1P ) ,  1P >. ]  ~R  )  +P.  1P ) ,  1P >. ]  ~R  =  [ <. ( ( iota_ y  e. 
P.  [ <. (
y  +P.  1P ) ,  1P >. ]  ~R  =  ( F `  A ) )  +P.  1P ) ,  1P >. ]  ~R  )
228ffvelrnda 5631 . . 3  |-  ( (
ph  /\  A  e.  N. )  ->  ( F `
 A )  e. 
R. )
23 0lt1sr 7727 . . . 4  |-  0R  <R  1R
24 fveq2 5496 . . . . . . 7  |-  ( m  =  A  ->  ( F `  m )  =  ( F `  A ) )
2524breq2d 4001 . . . . . 6  |-  ( m  =  A  ->  ( 1R  <R  ( F `  m )  <->  1R  <R  ( F `  A )
) )
2625rspcv 2830 . . . . 5  |-  ( A  e.  N.  ->  ( A. m  e.  N.  1R  <R  ( F `  m )  ->  1R  <R  ( F `  A
) ) )
279, 26mpan9 279 . . . 4  |-  ( (
ph  /\  A  e.  N. )  ->  1R  <R  ( F `  A ) )
28 ltsosr 7726 . . . . 5  |-  <R  Or  R.
29 ltrelsr 7700 . . . . 5  |-  <R  C_  ( R.  X.  R. )
3028, 29sotri 5006 . . . 4  |-  ( ( 0R  <R  1R  /\  1R  <R  ( F `  A
) )  ->  0R  <R  ( F `  A
) )
3123, 27, 30sylancr 412 . . 3  |-  ( (
ph  /\  A  e.  N. )  ->  0R  <R  ( F `  A ) )
32 prsrriota 7750 . . 3  |-  ( ( ( F `  A
)  e.  R.  /\  0R  <R  ( F `  A ) )  ->  [ <. ( ( iota_ y  e.  P.  [ <. ( y  +P.  1P ) ,  1P >. ]  ~R  =  ( F `  A ) )  +P. 
1P ) ,  1P >. ]  ~R  =  ( F `  A ) )
3322, 31, 32syl2anc 409 . 2  |-  ( (
ph  /\  A  e.  N. )  ->  [ <. ( ( iota_ y  e.  P.  [
<. ( y  +P.  1P ) ,  1P >. ]  ~R  =  ( F `  A ) )  +P. 
1P ) ,  1P >. ]  ~R  =  ( F `  A ) )
3414, 21, 333eqtrd 2207 1  |-  ( (
ph  /\  A  e.  N. )  ->  [ <. ( ( G `  A
)  +P.  1P ) ,  1P >. ]  ~R  =  ( F `  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1348    e. wcel 2141   {cab 2156   A.wral 2448   <.cop 3586   class class class wbr 3989    |-> cmpt 4050   -->wf 5194   ` cfv 5198   iota_crio 5808  (class class class)co 5853   1oc1o 6388   [cec 6511   N.cnpi 7234    <N clti 7237    ~Q ceq 7241   *Qcrq 7246    <Q cltq 7247   P.cnp 7253   1Pc1p 7254    +P. cpp 7255    ~R cer 7258   R.cnr 7259   0Rc0r 7260   1Rc1r 7261    +R cplr 7263    <R cltr 7265
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-eprel 4274  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-irdg 6349  df-1o 6395  df-2o 6396  df-oadd 6399  df-omul 6400  df-er 6513  df-ec 6515  df-qs 6519  df-ni 7266  df-pli 7267  df-mi 7268  df-lti 7269  df-plpq 7306  df-mpq 7307  df-enq 7309  df-nqqs 7310  df-plqqs 7311  df-mqqs 7312  df-1nqqs 7313  df-rq 7314  df-ltnqqs 7315  df-enq0 7386  df-nq0 7387  df-0nq0 7388  df-plq0 7389  df-mq0 7390  df-inp 7428  df-i1p 7429  df-iplp 7430  df-iltp 7432  df-enr 7688  df-nr 7689  df-ltr 7692  df-0r 7693  df-1r 7694
This theorem is referenced by:  caucvgsrlemcau  7755  caucvgsrlembound  7756  caucvgsrlemgt1  7757
  Copyright terms: Public domain W3C validator