ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgsrlemfv Unicode version

Theorem caucvgsrlemfv 7790
Description: Lemma for caucvgsr 7801. Coercing sequence value from a positive real to a signed real. (Contributed by Jim Kingdon, 29-Jun-2021.)
Hypotheses
Ref Expression
caucvgsr.f  |-  ( ph  ->  F : N. --> R. )
caucvgsr.cau  |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  (
n  <N  k  ->  (
( F `  n
)  <R  ( ( F `
 k )  +R 
[ <. ( <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )  /\  ( F `  k )  <R  (
( F `  n
)  +R  [ <. (
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ) ) ) )
caucvgsrlemgt1.gt1  |-  ( ph  ->  A. m  e.  N.  1R  <R  ( F `  m ) )
caucvgsrlemf.xfr  |-  G  =  ( x  e.  N.  |->  ( iota_ y  e.  P.  ( F `  x )  =  [ <. (
y  +P.  1P ) ,  1P >. ]  ~R  )
)
Assertion
Ref Expression
caucvgsrlemfv  |-  ( (
ph  /\  A  e.  N. )  ->  [ <. ( ( G `  A
)  +P.  1P ) ,  1P >. ]  ~R  =  ( F `  A ) )
Distinct variable groups:    A, m    x, A, y    m, F    x, F, y    ph, x
Allowed substitution hints:    ph( y, u, k, m, n, l)    A( u, k, n, l)    F( u, k, n, l)    G( x, y, u, k, m, n, l)

Proof of Theorem caucvgsrlemfv
StepHypRef Expression
1 caucvgsrlemf.xfr . . . . . . 7  |-  G  =  ( x  e.  N.  |->  ( iota_ y  e.  P.  ( F `  x )  =  [ <. (
y  +P.  1P ) ,  1P >. ]  ~R  )
)
21a1i 9 . . . . . 6  |-  ( (
ph  /\  A  e.  N. )  ->  G  =  ( x  e.  N.  |->  ( iota_ y  e.  P.  ( F `  x )  =  [ <. (
y  +P.  1P ) ,  1P >. ]  ~R  )
) )
3 fveq2 5516 . . . . . . . . 9  |-  ( x  =  A  ->  ( F `  x )  =  ( F `  A ) )
43eqeq1d 2186 . . . . . . . 8  |-  ( x  =  A  ->  (
( F `  x
)  =  [ <. ( y  +P.  1P ) ,  1P >. ]  ~R  <->  ( F `  A )  =  [ <. (
y  +P.  1P ) ,  1P >. ]  ~R  )
)
54riotabidv 5833 . . . . . . 7  |-  ( x  =  A  ->  ( iota_ y  e.  P.  ( F `  x )  =  [ <. ( y  +P. 
1P ) ,  1P >. ]  ~R  )  =  ( iota_ y  e.  P.  ( F `  A )  =  [ <. (
y  +P.  1P ) ,  1P >. ]  ~R  )
)
65adantl 277 . . . . . 6  |-  ( ( ( ph  /\  A  e.  N. )  /\  x  =  A )  ->  ( iota_ y  e.  P.  ( F `  x )  =  [ <. ( y  +P. 
1P ) ,  1P >. ]  ~R  )  =  ( iota_ y  e.  P.  ( F `  A )  =  [ <. (
y  +P.  1P ) ,  1P >. ]  ~R  )
)
7 simpr 110 . . . . . 6  |-  ( (
ph  /\  A  e.  N. )  ->  A  e. 
N. )
8 caucvgsr.f . . . . . . 7  |-  ( ph  ->  F : N. --> R. )
9 caucvgsrlemgt1.gt1 . . . . . . 7  |-  ( ph  ->  A. m  e.  N.  1R  <R  ( F `  m ) )
108, 9caucvgsrlemcl 7788 . . . . . 6  |-  ( (
ph  /\  A  e.  N. )  ->  ( iota_ y  e.  P.  ( F `
 A )  =  [ <. ( y  +P. 
1P ) ,  1P >. ]  ~R  )  e. 
P. )
112, 6, 7, 10fvmptd 5598 . . . . 5  |-  ( (
ph  /\  A  e.  N. )  ->  ( G `
 A )  =  ( iota_ y  e.  P.  ( F `  A )  =  [ <. (
y  +P.  1P ) ,  1P >. ]  ~R  )
)
1211oveq1d 5890 . . . 4  |-  ( (
ph  /\  A  e.  N. )  ->  ( ( G `  A )  +P.  1P )  =  ( ( iota_ y  e. 
P.  ( F `  A )  =  [ <. ( y  +P.  1P ) ,  1P >. ]  ~R  )  +P.  1P ) )
1312opeq1d 3785 . . 3  |-  ( (
ph  /\  A  e.  N. )  ->  <. (
( G `  A
)  +P.  1P ) ,  1P >.  =  <. ( ( iota_ y  e.  P.  ( F `  A )  =  [ <. (
y  +P.  1P ) ,  1P >. ]  ~R  )  +P.  1P ) ,  1P >. )
1413eceq1d 6571 . 2  |-  ( (
ph  /\  A  e.  N. )  ->  [ <. ( ( G `  A
)  +P.  1P ) ,  1P >. ]  ~R  =  [ <. ( ( iota_ y  e.  P.  ( F `
 A )  =  [ <. ( y  +P. 
1P ) ,  1P >. ]  ~R  )  +P. 
1P ) ,  1P >. ]  ~R  )
15 eqcom 2179 . . . . . . 7  |-  ( ( F `  A )  =  [ <. (
y  +P.  1P ) ,  1P >. ]  ~R  <->  [ <. (
y  +P.  1P ) ,  1P >. ]  ~R  =  ( F `  A ) )
1615a1i 9 . . . . . 6  |-  ( y  e.  P.  ->  (
( F `  A
)  =  [ <. ( y  +P.  1P ) ,  1P >. ]  ~R  <->  [
<. ( y  +P.  1P ) ,  1P >. ]  ~R  =  ( F `  A ) ) )
1716riotabiia 5848 . . . . 5  |-  ( iota_ y  e.  P.  ( F `
 A )  =  [ <. ( y  +P. 
1P ) ,  1P >. ]  ~R  )  =  ( iota_ y  e.  P.  [
<. ( y  +P.  1P ) ,  1P >. ]  ~R  =  ( F `  A ) )
1817oveq1i 5885 . . . 4  |-  ( (
iota_ y  e.  P.  ( F `  A )  =  [ <. (
y  +P.  1P ) ,  1P >. ]  ~R  )  +P.  1P )  =  ( ( iota_ y  e.  P.  [
<. ( y  +P.  1P ) ,  1P >. ]  ~R  =  ( F `  A ) )  +P. 
1P )
1918opeq1i 3782 . . 3  |-  <. (
( iota_ y  e.  P.  ( F `  A )  =  [ <. (
y  +P.  1P ) ,  1P >. ]  ~R  )  +P.  1P ) ,  1P >.  =  <. ( ( iota_ y  e.  P.  [ <. ( y  +P.  1P ) ,  1P >. ]  ~R  =  ( F `  A ) )  +P. 
1P ) ,  1P >.
20 eceq1 6570 . . 3  |-  ( <.
( ( iota_ y  e. 
P.  ( F `  A )  =  [ <. ( y  +P.  1P ) ,  1P >. ]  ~R  )  +P.  1P ) ,  1P >.  =  <. ( ( iota_ y  e.  P.  [
<. ( y  +P.  1P ) ,  1P >. ]  ~R  =  ( F `  A ) )  +P. 
1P ) ,  1P >.  ->  [ <. (
( iota_ y  e.  P.  ( F `  A )  =  [ <. (
y  +P.  1P ) ,  1P >. ]  ~R  )  +P.  1P ) ,  1P >. ]  ~R  =  [ <. ( ( iota_ y  e. 
P.  [ <. (
y  +P.  1P ) ,  1P >. ]  ~R  =  ( F `  A ) )  +P.  1P ) ,  1P >. ]  ~R  )
2119, 20mp1i 10 . 2  |-  ( (
ph  /\  A  e.  N. )  ->  [ <. ( ( iota_ y  e.  P.  ( F `  A )  =  [ <. (
y  +P.  1P ) ,  1P >. ]  ~R  )  +P.  1P ) ,  1P >. ]  ~R  =  [ <. ( ( iota_ y  e. 
P.  [ <. (
y  +P.  1P ) ,  1P >. ]  ~R  =  ( F `  A ) )  +P.  1P ) ,  1P >. ]  ~R  )
228ffvelcdmda 5652 . . 3  |-  ( (
ph  /\  A  e.  N. )  ->  ( F `
 A )  e. 
R. )
23 0lt1sr 7764 . . . 4  |-  0R  <R  1R
24 fveq2 5516 . . . . . . 7  |-  ( m  =  A  ->  ( F `  m )  =  ( F `  A ) )
2524breq2d 4016 . . . . . 6  |-  ( m  =  A  ->  ( 1R  <R  ( F `  m )  <->  1R  <R  ( F `  A )
) )
2625rspcv 2838 . . . . 5  |-  ( A  e.  N.  ->  ( A. m  e.  N.  1R  <R  ( F `  m )  ->  1R  <R  ( F `  A
) ) )
279, 26mpan9 281 . . . 4  |-  ( (
ph  /\  A  e.  N. )  ->  1R  <R  ( F `  A ) )
28 ltsosr 7763 . . . . 5  |-  <R  Or  R.
29 ltrelsr 7737 . . . . 5  |-  <R  C_  ( R.  X.  R. )
3028, 29sotri 5025 . . . 4  |-  ( ( 0R  <R  1R  /\  1R  <R  ( F `  A
) )  ->  0R  <R  ( F `  A
) )
3123, 27, 30sylancr 414 . . 3  |-  ( (
ph  /\  A  e.  N. )  ->  0R  <R  ( F `  A ) )
32 prsrriota 7787 . . 3  |-  ( ( ( F `  A
)  e.  R.  /\  0R  <R  ( F `  A ) )  ->  [ <. ( ( iota_ y  e.  P.  [ <. ( y  +P.  1P ) ,  1P >. ]  ~R  =  ( F `  A ) )  +P. 
1P ) ,  1P >. ]  ~R  =  ( F `  A ) )
3322, 31, 32syl2anc 411 . 2  |-  ( (
ph  /\  A  e.  N. )  ->  [ <. ( ( iota_ y  e.  P.  [
<. ( y  +P.  1P ) ,  1P >. ]  ~R  =  ( F `  A ) )  +P. 
1P ) ,  1P >. ]  ~R  =  ( F `  A ) )
3414, 21, 333eqtrd 2214 1  |-  ( (
ph  /\  A  e.  N. )  ->  [ <. ( ( G `  A
)  +P.  1P ) ,  1P >. ]  ~R  =  ( F `  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1353    e. wcel 2148   {cab 2163   A.wral 2455   <.cop 3596   class class class wbr 4004    |-> cmpt 4065   -->wf 5213   ` cfv 5217   iota_crio 5830  (class class class)co 5875   1oc1o 6410   [cec 6533   N.cnpi 7271    <N clti 7274    ~Q ceq 7278   *Qcrq 7283    <Q cltq 7284   P.cnp 7290   1Pc1p 7291    +P. cpp 7292    ~R cer 7295   R.cnr 7296   0Rc0r 7297   1Rc1r 7298    +R cplr 7300    <R cltr 7302
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4119  ax-sep 4122  ax-nul 4130  ax-pow 4175  ax-pr 4210  ax-un 4434  ax-setind 4537  ax-iinf 4588
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2740  df-sbc 2964  df-csb 3059  df-dif 3132  df-un 3134  df-in 3136  df-ss 3143  df-nul 3424  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-int 3846  df-iun 3889  df-br 4005  df-opab 4066  df-mpt 4067  df-tr 4103  df-eprel 4290  df-id 4294  df-po 4297  df-iso 4298  df-iord 4367  df-on 4369  df-suc 4372  df-iom 4591  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-rn 4638  df-res 4639  df-ima 4640  df-iota 5179  df-fun 5219  df-fn 5220  df-f 5221  df-f1 5222  df-fo 5223  df-f1o 5224  df-fv 5225  df-riota 5831  df-ov 5878  df-oprab 5879  df-mpo 5880  df-1st 6141  df-2nd 6142  df-recs 6306  df-irdg 6371  df-1o 6417  df-2o 6418  df-oadd 6421  df-omul 6422  df-er 6535  df-ec 6537  df-qs 6541  df-ni 7303  df-pli 7304  df-mi 7305  df-lti 7306  df-plpq 7343  df-mpq 7344  df-enq 7346  df-nqqs 7347  df-plqqs 7348  df-mqqs 7349  df-1nqqs 7350  df-rq 7351  df-ltnqqs 7352  df-enq0 7423  df-nq0 7424  df-0nq0 7425  df-plq0 7426  df-mq0 7427  df-inp 7465  df-i1p 7466  df-iplp 7467  df-iltp 7469  df-enr 7725  df-nr 7726  df-ltr 7729  df-0r 7730  df-1r 7731
This theorem is referenced by:  caucvgsrlemcau  7792  caucvgsrlembound  7793  caucvgsrlemgt1  7794
  Copyright terms: Public domain W3C validator