ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgsrlemfv Unicode version

Theorem caucvgsrlemfv 7592
Description: Lemma for caucvgsr 7603. Coercing sequence value from a positive real to a signed real. (Contributed by Jim Kingdon, 29-Jun-2021.)
Hypotheses
Ref Expression
caucvgsr.f  |-  ( ph  ->  F : N. --> R. )
caucvgsr.cau  |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  (
n  <N  k  ->  (
( F `  n
)  <R  ( ( F `
 k )  +R 
[ <. ( <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )  /\  ( F `  k )  <R  (
( F `  n
)  +R  [ <. (
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ) ) ) )
caucvgsrlemgt1.gt1  |-  ( ph  ->  A. m  e.  N.  1R  <R  ( F `  m ) )
caucvgsrlemf.xfr  |-  G  =  ( x  e.  N.  |->  ( iota_ y  e.  P.  ( F `  x )  =  [ <. (
y  +P.  1P ) ,  1P >. ]  ~R  )
)
Assertion
Ref Expression
caucvgsrlemfv  |-  ( (
ph  /\  A  e.  N. )  ->  [ <. ( ( G `  A
)  +P.  1P ) ,  1P >. ]  ~R  =  ( F `  A ) )
Distinct variable groups:    A, m    x, A, y    m, F    x, F, y    ph, x
Allowed substitution hints:    ph( y, u, k, m, n, l)    A( u, k, n, l)    F( u, k, n, l)    G( x, y, u, k, m, n, l)

Proof of Theorem caucvgsrlemfv
StepHypRef Expression
1 caucvgsrlemf.xfr . . . . . . 7  |-  G  =  ( x  e.  N.  |->  ( iota_ y  e.  P.  ( F `  x )  =  [ <. (
y  +P.  1P ) ,  1P >. ]  ~R  )
)
21a1i 9 . . . . . 6  |-  ( (
ph  /\  A  e.  N. )  ->  G  =  ( x  e.  N.  |->  ( iota_ y  e.  P.  ( F `  x )  =  [ <. (
y  +P.  1P ) ,  1P >. ]  ~R  )
) )
3 fveq2 5414 . . . . . . . . 9  |-  ( x  =  A  ->  ( F `  x )  =  ( F `  A ) )
43eqeq1d 2146 . . . . . . . 8  |-  ( x  =  A  ->  (
( F `  x
)  =  [ <. ( y  +P.  1P ) ,  1P >. ]  ~R  <->  ( F `  A )  =  [ <. (
y  +P.  1P ) ,  1P >. ]  ~R  )
)
54riotabidv 5725 . . . . . . 7  |-  ( x  =  A  ->  ( iota_ y  e.  P.  ( F `  x )  =  [ <. ( y  +P. 
1P ) ,  1P >. ]  ~R  )  =  ( iota_ y  e.  P.  ( F `  A )  =  [ <. (
y  +P.  1P ) ,  1P >. ]  ~R  )
)
65adantl 275 . . . . . 6  |-  ( ( ( ph  /\  A  e.  N. )  /\  x  =  A )  ->  ( iota_ y  e.  P.  ( F `  x )  =  [ <. ( y  +P. 
1P ) ,  1P >. ]  ~R  )  =  ( iota_ y  e.  P.  ( F `  A )  =  [ <. (
y  +P.  1P ) ,  1P >. ]  ~R  )
)
7 simpr 109 . . . . . 6  |-  ( (
ph  /\  A  e.  N. )  ->  A  e. 
N. )
8 caucvgsr.f . . . . . . 7  |-  ( ph  ->  F : N. --> R. )
9 caucvgsrlemgt1.gt1 . . . . . . 7  |-  ( ph  ->  A. m  e.  N.  1R  <R  ( F `  m ) )
108, 9caucvgsrlemcl 7590 . . . . . 6  |-  ( (
ph  /\  A  e.  N. )  ->  ( iota_ y  e.  P.  ( F `
 A )  =  [ <. ( y  +P. 
1P ) ,  1P >. ]  ~R  )  e. 
P. )
112, 6, 7, 10fvmptd 5495 . . . . 5  |-  ( (
ph  /\  A  e.  N. )  ->  ( G `
 A )  =  ( iota_ y  e.  P.  ( F `  A )  =  [ <. (
y  +P.  1P ) ,  1P >. ]  ~R  )
)
1211oveq1d 5782 . . . 4  |-  ( (
ph  /\  A  e.  N. )  ->  ( ( G `  A )  +P.  1P )  =  ( ( iota_ y  e. 
P.  ( F `  A )  =  [ <. ( y  +P.  1P ) ,  1P >. ]  ~R  )  +P.  1P ) )
1312opeq1d 3706 . . 3  |-  ( (
ph  /\  A  e.  N. )  ->  <. (
( G `  A
)  +P.  1P ) ,  1P >.  =  <. ( ( iota_ y  e.  P.  ( F `  A )  =  [ <. (
y  +P.  1P ) ,  1P >. ]  ~R  )  +P.  1P ) ,  1P >. )
1413eceq1d 6458 . 2  |-  ( (
ph  /\  A  e.  N. )  ->  [ <. ( ( G `  A
)  +P.  1P ) ,  1P >. ]  ~R  =  [ <. ( ( iota_ y  e.  P.  ( F `
 A )  =  [ <. ( y  +P. 
1P ) ,  1P >. ]  ~R  )  +P. 
1P ) ,  1P >. ]  ~R  )
15 eqcom 2139 . . . . . . 7  |-  ( ( F `  A )  =  [ <. (
y  +P.  1P ) ,  1P >. ]  ~R  <->  [ <. (
y  +P.  1P ) ,  1P >. ]  ~R  =  ( F `  A ) )
1615a1i 9 . . . . . 6  |-  ( y  e.  P.  ->  (
( F `  A
)  =  [ <. ( y  +P.  1P ) ,  1P >. ]  ~R  <->  [
<. ( y  +P.  1P ) ,  1P >. ]  ~R  =  ( F `  A ) ) )
1716riotabiia 5740 . . . . 5  |-  ( iota_ y  e.  P.  ( F `
 A )  =  [ <. ( y  +P. 
1P ) ,  1P >. ]  ~R  )  =  ( iota_ y  e.  P.  [
<. ( y  +P.  1P ) ,  1P >. ]  ~R  =  ( F `  A ) )
1817oveq1i 5777 . . . 4  |-  ( (
iota_ y  e.  P.  ( F `  A )  =  [ <. (
y  +P.  1P ) ,  1P >. ]  ~R  )  +P.  1P )  =  ( ( iota_ y  e.  P.  [
<. ( y  +P.  1P ) ,  1P >. ]  ~R  =  ( F `  A ) )  +P. 
1P )
1918opeq1i 3703 . . 3  |-  <. (
( iota_ y  e.  P.  ( F `  A )  =  [ <. (
y  +P.  1P ) ,  1P >. ]  ~R  )  +P.  1P ) ,  1P >.  =  <. ( ( iota_ y  e.  P.  [ <. ( y  +P.  1P ) ,  1P >. ]  ~R  =  ( F `  A ) )  +P. 
1P ) ,  1P >.
20 eceq1 6457 . . 3  |-  ( <.
( ( iota_ y  e. 
P.  ( F `  A )  =  [ <. ( y  +P.  1P ) ,  1P >. ]  ~R  )  +P.  1P ) ,  1P >.  =  <. ( ( iota_ y  e.  P.  [
<. ( y  +P.  1P ) ,  1P >. ]  ~R  =  ( F `  A ) )  +P. 
1P ) ,  1P >.  ->  [ <. (
( iota_ y  e.  P.  ( F `  A )  =  [ <. (
y  +P.  1P ) ,  1P >. ]  ~R  )  +P.  1P ) ,  1P >. ]  ~R  =  [ <. ( ( iota_ y  e. 
P.  [ <. (
y  +P.  1P ) ,  1P >. ]  ~R  =  ( F `  A ) )  +P.  1P ) ,  1P >. ]  ~R  )
2119, 20mp1i 10 . 2  |-  ( (
ph  /\  A  e.  N. )  ->  [ <. ( ( iota_ y  e.  P.  ( F `  A )  =  [ <. (
y  +P.  1P ) ,  1P >. ]  ~R  )  +P.  1P ) ,  1P >. ]  ~R  =  [ <. ( ( iota_ y  e. 
P.  [ <. (
y  +P.  1P ) ,  1P >. ]  ~R  =  ( F `  A ) )  +P.  1P ) ,  1P >. ]  ~R  )
228ffvelrnda 5548 . . 3  |-  ( (
ph  /\  A  e.  N. )  ->  ( F `
 A )  e. 
R. )
23 0lt1sr 7566 . . . 4  |-  0R  <R  1R
24 fveq2 5414 . . . . . . 7  |-  ( m  =  A  ->  ( F `  m )  =  ( F `  A ) )
2524breq2d 3936 . . . . . 6  |-  ( m  =  A  ->  ( 1R  <R  ( F `  m )  <->  1R  <R  ( F `  A )
) )
2625rspcv 2780 . . . . 5  |-  ( A  e.  N.  ->  ( A. m  e.  N.  1R  <R  ( F `  m )  ->  1R  <R  ( F `  A
) ) )
279, 26mpan9 279 . . . 4  |-  ( (
ph  /\  A  e.  N. )  ->  1R  <R  ( F `  A ) )
28 ltsosr 7565 . . . . 5  |-  <R  Or  R.
29 ltrelsr 7539 . . . . 5  |-  <R  C_  ( R.  X.  R. )
3028, 29sotri 4929 . . . 4  |-  ( ( 0R  <R  1R  /\  1R  <R  ( F `  A
) )  ->  0R  <R  ( F `  A
) )
3123, 27, 30sylancr 410 . . 3  |-  ( (
ph  /\  A  e.  N. )  ->  0R  <R  ( F `  A ) )
32 prsrriota 7589 . . 3  |-  ( ( ( F `  A
)  e.  R.  /\  0R  <R  ( F `  A ) )  ->  [ <. ( ( iota_ y  e.  P.  [ <. ( y  +P.  1P ) ,  1P >. ]  ~R  =  ( F `  A ) )  +P. 
1P ) ,  1P >. ]  ~R  =  ( F `  A ) )
3322, 31, 32syl2anc 408 . 2  |-  ( (
ph  /\  A  e.  N. )  ->  [ <. ( ( iota_ y  e.  P.  [
<. ( y  +P.  1P ) ,  1P >. ]  ~R  =  ( F `  A ) )  +P. 
1P ) ,  1P >. ]  ~R  =  ( F `  A ) )
3414, 21, 333eqtrd 2174 1  |-  ( (
ph  /\  A  e.  N. )  ->  [ <. ( ( G `  A
)  +P.  1P ) ,  1P >. ]  ~R  =  ( F `  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1331    e. wcel 1480   {cab 2123   A.wral 2414   <.cop 3525   class class class wbr 3924    |-> cmpt 3984   -->wf 5114   ` cfv 5118   iota_crio 5722  (class class class)co 5767   1oc1o 6299   [cec 6420   N.cnpi 7073    <N clti 7076    ~Q ceq 7080   *Qcrq 7085    <Q cltq 7086   P.cnp 7092   1Pc1p 7093    +P. cpp 7094    ~R cer 7097   R.cnr 7098   0Rc0r 7099   1Rc1r 7100    +R cplr 7102    <R cltr 7104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-coll 4038  ax-sep 4041  ax-nul 4049  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447  ax-iinf 4497
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-ral 2419  df-rex 2420  df-reu 2421  df-rmo 2422  df-rab 2423  df-v 2683  df-sbc 2905  df-csb 2999  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-nul 3359  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-int 3767  df-iun 3810  df-br 3925  df-opab 3985  df-mpt 3986  df-tr 4022  df-eprel 4206  df-id 4210  df-po 4213  df-iso 4214  df-iord 4283  df-on 4285  df-suc 4288  df-iom 4500  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-f1 5123  df-fo 5124  df-f1o 5125  df-fv 5126  df-riota 5723  df-ov 5770  df-oprab 5771  df-mpo 5772  df-1st 6031  df-2nd 6032  df-recs 6195  df-irdg 6260  df-1o 6306  df-2o 6307  df-oadd 6310  df-omul 6311  df-er 6422  df-ec 6424  df-qs 6428  df-ni 7105  df-pli 7106  df-mi 7107  df-lti 7108  df-plpq 7145  df-mpq 7146  df-enq 7148  df-nqqs 7149  df-plqqs 7150  df-mqqs 7151  df-1nqqs 7152  df-rq 7153  df-ltnqqs 7154  df-enq0 7225  df-nq0 7226  df-0nq0 7227  df-plq0 7228  df-mq0 7229  df-inp 7267  df-i1p 7268  df-iplp 7269  df-iltp 7271  df-enr 7527  df-nr 7528  df-ltr 7531  df-0r 7532  df-1r 7533
This theorem is referenced by:  caucvgsrlemcau  7594  caucvgsrlembound  7595  caucvgsrlemgt1  7596
  Copyright terms: Public domain W3C validator