ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  riota1 Unicode version

Theorem riota1 5748
Description: Property of restricted iota. Compare iota1 5102. (Contributed by Mario Carneiro, 15-Oct-2016.)
Assertion
Ref Expression
riota1  |-  ( E! x  e.  A  ph  ->  ( ( x  e.  A  /\  ph )  <->  (
iota_ x  e.  A  ph )  =  x ) )
Distinct variable group:    x, A
Allowed substitution hint:    ph( x)

Proof of Theorem riota1
StepHypRef Expression
1 df-reu 2423 . . 3  |-  ( E! x  e.  A  ph  <->  E! x ( x  e.  A  /\  ph )
)
2 iota1 5102 . . 3  |-  ( E! x ( x  e.  A  /\  ph )  ->  ( ( x  e.  A  /\  ph )  <->  ( iota x ( x  e.  A  /\  ph ) )  =  x ) )
31, 2sylbi 120 . 2  |-  ( E! x  e.  A  ph  ->  ( ( x  e.  A  /\  ph )  <->  ( iota x ( x  e.  A  /\  ph ) )  =  x ) )
4 df-riota 5730 . . 3  |-  ( iota_ x  e.  A  ph )  =  ( iota x
( x  e.  A  /\  ph ) )
54eqeq1i 2147 . 2  |-  ( (
iota_ x  e.  A  ph )  =  x  <->  ( iota x ( x  e.  A  /\  ph )
)  =  x )
63, 5syl6bbr 197 1  |-  ( E! x  e.  A  ph  ->  ( ( x  e.  A  /\  ph )  <->  (
iota_ x  e.  A  ph )  =  x ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1331    e. wcel 1480   E!weu 1999   E!wreu 2418   iotacio 5086   iota_crio 5729
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121
This theorem depends on definitions:  df-bi 116  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2002  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-rex 2422  df-reu 2423  df-v 2688  df-sbc 2910  df-un 3075  df-sn 3533  df-pr 3534  df-uni 3737  df-iota 5088  df-riota 5730
This theorem is referenced by:  supelti  6889  oddpwdclemdvds  11859  oddpwdclemndvds  11860
  Copyright terms: Public domain W3C validator