ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  riota1 Unicode version

Theorem riota1 5920
Description: Property of restricted iota. Compare iota1 5247. (Contributed by Mario Carneiro, 15-Oct-2016.)
Assertion
Ref Expression
riota1  |-  ( E! x  e.  A  ph  ->  ( ( x  e.  A  /\  ph )  <->  (
iota_ x  e.  A  ph )  =  x ) )
Distinct variable group:    x, A
Allowed substitution hint:    ph( x)

Proof of Theorem riota1
StepHypRef Expression
1 df-reu 2491 . . 3  |-  ( E! x  e.  A  ph  <->  E! x ( x  e.  A  /\  ph )
)
2 iota1 5247 . . 3  |-  ( E! x ( x  e.  A  /\  ph )  ->  ( ( x  e.  A  /\  ph )  <->  ( iota x ( x  e.  A  /\  ph ) )  =  x ) )
31, 2sylbi 121 . 2  |-  ( E! x  e.  A  ph  ->  ( ( x  e.  A  /\  ph )  <->  ( iota x ( x  e.  A  /\  ph ) )  =  x ) )
4 df-riota 5901 . . 3  |-  ( iota_ x  e.  A  ph )  =  ( iota x
( x  e.  A  /\  ph ) )
54eqeq1i 2213 . 2  |-  ( (
iota_ x  e.  A  ph )  =  x  <->  ( iota x ( x  e.  A  /\  ph )
)  =  x )
63, 5bitr4di 198 1  |-  ( E! x  e.  A  ph  ->  ( ( x  e.  A  /\  ph )  <->  (
iota_ x  e.  A  ph )  =  x ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373   E!weu 2054    e. wcel 2176   E!wreu 2486   iotacio 5231   iota_crio 5900
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-rex 2490  df-reu 2491  df-v 2774  df-sbc 2999  df-un 3170  df-sn 3639  df-pr 3640  df-uni 3851  df-iota 5233  df-riota 5901
This theorem is referenced by:  supelti  7106  oddpwdclemdvds  12525  oddpwdclemndvds  12526
  Copyright terms: Public domain W3C validator