ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  riota1 Unicode version

Theorem riota1 5892
Description: Property of restricted iota. Compare iota1 5229. (Contributed by Mario Carneiro, 15-Oct-2016.)
Assertion
Ref Expression
riota1  |-  ( E! x  e.  A  ph  ->  ( ( x  e.  A  /\  ph )  <->  (
iota_ x  e.  A  ph )  =  x ) )
Distinct variable group:    x, A
Allowed substitution hint:    ph( x)

Proof of Theorem riota1
StepHypRef Expression
1 df-reu 2479 . . 3  |-  ( E! x  e.  A  ph  <->  E! x ( x  e.  A  /\  ph )
)
2 iota1 5229 . . 3  |-  ( E! x ( x  e.  A  /\  ph )  ->  ( ( x  e.  A  /\  ph )  <->  ( iota x ( x  e.  A  /\  ph ) )  =  x ) )
31, 2sylbi 121 . 2  |-  ( E! x  e.  A  ph  ->  ( ( x  e.  A  /\  ph )  <->  ( iota x ( x  e.  A  /\  ph ) )  =  x ) )
4 df-riota 5873 . . 3  |-  ( iota_ x  e.  A  ph )  =  ( iota x
( x  e.  A  /\  ph ) )
54eqeq1i 2201 . 2  |-  ( (
iota_ x  e.  A  ph )  =  x  <->  ( iota x ( x  e.  A  /\  ph )
)  =  x )
63, 5bitr4di 198 1  |-  ( E! x  e.  A  ph  ->  ( ( x  e.  A  /\  ph )  <->  (
iota_ x  e.  A  ph )  =  x ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364   E!weu 2042    e. wcel 2164   E!wreu 2474   iotacio 5213   iota_crio 5872
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-rex 2478  df-reu 2479  df-v 2762  df-sbc 2986  df-un 3157  df-sn 3624  df-pr 3625  df-uni 3836  df-iota 5215  df-riota 5873
This theorem is referenced by:  supelti  7061  oddpwdclemdvds  12308  oddpwdclemndvds  12309
  Copyright terms: Public domain W3C validator