Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  riota1 Unicode version

Theorem riota1 5680
 Description: Property of restricted iota. Compare iota1 5038. (Contributed by Mario Carneiro, 15-Oct-2016.)
Assertion
Ref Expression
riota1
Distinct variable group:   ,
Allowed substitution hint:   ()

Proof of Theorem riota1
StepHypRef Expression
1 df-reu 2382 . . 3
2 iota1 5038 . . 3
31, 2sylbi 120 . 2
4 df-riota 5662 . . 3
54eqeq1i 2107 . 2
63, 5syl6bbr 197 1
 Colors of variables: wff set class Syntax hints:   wi 4   wa 103   wb 104   wceq 1299   wcel 1448  weu 1960  wreu 2377  cio 5022  crio 5661 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082 This theorem depends on definitions:  df-bi 116  df-tru 1302  df-nf 1405  df-sb 1704  df-eu 1963  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-rex 2381  df-reu 2382  df-v 2643  df-sbc 2863  df-un 3025  df-sn 3480  df-pr 3481  df-uni 3684  df-iota 5024  df-riota 5662 This theorem is referenced by:  supelti  6804  oddpwdclemdvds  11640  oddpwdclemndvds  11641
 Copyright terms: Public domain W3C validator