| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > raleqi | Unicode version | ||
| Description: Equality inference for restricted universal qualifier. (Contributed by Paul Chapman, 22-Jun-2011.) |
| Ref | Expression |
|---|---|
| raleq1i.1 |
|
| Ref | Expression |
|---|---|
| raleqi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | raleq1i.1 |
. 2
| |
| 2 | raleq 2702 |
. 2
| |
| 3 | 1, 2 | ax-mp 5 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 |
| This theorem is referenced by: ralrab2 2938 ralprg 3684 raltpg 3686 omsinds 4671 ralxp 4822 ralrnmpo 6062 nnnninfeq2 7233 fzprval 10206 fztpval 10207 infssuzex 10378 seq3f1olemp 10662 zsumdc 11728 zproddc 11923 2prm 12482 xpsfrnel 13209 nninfsellemdc 15984 nninfsellemsuc 15986 |
| Copyright terms: Public domain | W3C validator |