| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > raleqi | Unicode version | ||
| Description: Equality inference for restricted universal qualifier. (Contributed by Paul Chapman, 22-Jun-2011.) | 
| Ref | Expression | 
|---|---|
| raleq1i.1 | 
 | 
| Ref | Expression | 
|---|---|
| raleqi | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | raleq1i.1 | 
. 2
 | |
| 2 | raleq 2693 | 
. 2
 | |
| 3 | 1, 2 | ax-mp 5 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 | 
| This theorem is referenced by: ralrab2 2929 ralprg 3673 raltpg 3675 omsinds 4658 ralxp 4809 ralrnmpo 6037 nnnninfeq2 7195 fzprval 10157 fztpval 10158 infssuzex 10323 seq3f1olemp 10607 zsumdc 11549 zproddc 11744 2prm 12295 xpsfrnel 12987 nninfsellemdc 15654 nninfsellemsuc 15656 | 
| Copyright terms: Public domain | W3C validator |