ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  raleqi Unicode version

Theorem raleqi 2566
Description: Equality inference for restricted universal qualifier. (Contributed by Paul Chapman, 22-Jun-2011.)
Hypothesis
Ref Expression
raleq1i.1  |-  A  =  B
Assertion
Ref Expression
raleqi  |-  ( A. x  e.  A  ph  <->  A. x  e.  B  ph )
Distinct variable groups:    x, A    x, B
Allowed substitution hint:    ph( x)

Proof of Theorem raleqi
StepHypRef Expression
1 raleq1i.1 . 2  |-  A  =  B
2 raleq 2562 . 2  |-  ( A  =  B  ->  ( A. x  e.  A  ph  <->  A. x  e.  B  ph ) )
31, 2ax-mp 7 1  |-  ( A. x  e.  A  ph  <->  A. x  e.  B  ph )
Colors of variables: wff set class
Syntax hints:    <-> wb 103    = wceq 1289   A.wral 2359
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070
This theorem depends on definitions:  df-bi 115  df-tru 1292  df-nf 1395  df-sb 1693  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ral 2364
This theorem is referenced by:  ralrab2  2780  ralprg  3493  raltpg  3495  omsinds  4435  ralxp  4579  ralrnmpt2  5759  fzprval  9496  fztpval  9497  seq3f1olemp  9931  zisum  10774  infssuzex  11223  2prm  11387  nninfsellemdc  11902  nninfsellemsuc  11904
  Copyright terms: Public domain W3C validator