| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > raleqi | Unicode version | ||
| Description: Equality inference for restricted universal qualifier. (Contributed by Paul Chapman, 22-Jun-2011.) |
| Ref | Expression |
|---|---|
| raleq1i.1 |
|
| Ref | Expression |
|---|---|
| raleqi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | raleq1i.1 |
. 2
| |
| 2 | raleq 2728 |
. 2
| |
| 3 | 1, 2 | ax-mp 5 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 |
| This theorem is referenced by: ralrab2 2968 ralprg 3717 raltpg 3719 omsinds 4714 ralxp 4865 ralrnmpo 6119 nnnninfeq2 7296 fzprval 10278 fztpval 10279 infssuzex 10453 seq3f1olemp 10737 zsumdc 11895 zproddc 12090 2prm 12649 xpsfrnel 13377 nninfsellemdc 16376 nninfsellemsuc 16378 |
| Copyright terms: Public domain | W3C validator |