ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rmoeq1 GIF version

Theorem rmoeq1 2579
Description: Equality theorem for restricted at-most-one quantifier. (Contributed by Alexander van der Vekens, 17-Jun-2017.)
Assertion
Ref Expression
rmoeq1 (𝐴 = 𝐵 → (∃*𝑥𝐴 𝜑 ↔ ∃*𝑥𝐵 𝜑))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem rmoeq1
StepHypRef Expression
1 nfcv 2235 . 2 𝑥𝐴
2 nfcv 2235 . 2 𝑥𝐵
31, 2rmoeq1f 2575 1 (𝐴 = 𝐵 → (∃*𝑥𝐴 𝜑 ↔ ∃*𝑥𝐵 𝜑))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104   = wceq 1296  ∃*wrmo 2373
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 668  ax-5 1388  ax-7 1389  ax-gen 1390  ax-ie1 1434  ax-ie2 1435  ax-8 1447  ax-10 1448  ax-11 1449  ax-i12 1450  ax-bndl 1451  ax-4 1452  ax-17 1471  ax-i9 1475  ax-ial 1479  ax-i5r 1480  ax-ext 2077
This theorem depends on definitions:  df-bi 116  df-tru 1299  df-nf 1402  df-sb 1700  df-eu 1958  df-mo 1959  df-cleq 2088  df-clel 2091  df-nfc 2224  df-rmo 2378
This theorem is referenced by:  rmoeqd  2587
  Copyright terms: Public domain W3C validator