Proof of Theorem cnmpt22
Step | Hyp | Ref
| Expression |
1 | | df-ov 5729 |
. . . 4
   
     
        |
2 | | cnmpt21.j |
. . . . . . . . . 10
 TopOn    |
3 | | cnmpt21.k |
. . . . . . . . . 10
 TopOn    |
4 | | txtopon 12267 |
. . . . . . . . . 10
  TopOn  TopOn  
  TopOn      |
5 | 2, 3, 4 | syl2anc 406 |
. . . . . . . . 9
   TopOn 
    |
6 | | cnmpt22.l |
. . . . . . . . 9
 TopOn    |
7 | | cnmpt21.a |
. . . . . . . . 9
  
       |
8 | | cnf2 12210 |
. . . . . . . . 9
    TopOn 
  TopOn   
     
           |
9 | 5, 6, 7, 8 | syl3anc 1197 |
. . . . . . . 8
  
         |
10 | | eqid 2113 |
. . . . . . . . 9
       |
11 | 10 | fmpo 6051 |
. . . . . . . 8
 

           |
12 | 9, 11 | sylibr 133 |
. . . . . . 7
  
  |
13 | | rsp2 2454 |
. . . . . . 7
 

 
    |
14 | 12, 13 | syl 14 |
. . . . . 6
       |
15 | 14 | 3impib 1160 |
. . . . 5
 

  |
16 | | cnmpt22.m |
. . . . . . . . 9
 TopOn    |
17 | | cnmpt2t.b |
. . . . . . . . 9
  
       |
18 | | cnf2 12210 |
. . . . . . . . 9
    TopOn 
  TopOn   
     
           |
19 | 5, 16, 17, 18 | syl3anc 1197 |
. . . . . . . 8
  
         |
20 | | eqid 2113 |
. . . . . . . . 9
       |
21 | 20 | fmpo 6051 |
. . . . . . . 8
 

           |
22 | 19, 21 | sylibr 133 |
. . . . . . 7
  
  |
23 | | rsp2 2454 |
. . . . . . 7
 

 
    |
24 | 22, 23 | syl 14 |
. . . . . 6
       |
25 | 24 | 3impib 1160 |
. . . . 5
 

  |
26 | 15, 25 | jca 302 |
. . . . . 6
 


   |
27 | | txtopon 12267 |
. . . . . . . . . . 11
  TopOn  TopOn  
  TopOn      |
28 | 6, 16, 27 | syl2anc 406 |
. . . . . . . . . 10
   TopOn 
    |
29 | | cnmpt22.c |
. . . . . . . . . . . 12
  
       |
30 | | cntop2 12207 |
. . . . . . . . . . . 12
  
    
  |
31 | 29, 30 | syl 14 |
. . . . . . . . . . 11
   |
32 | | toptopon2 12023 |
. . . . . . . . . . 11

TopOn     |
33 | 31, 32 | sylib 121 |
. . . . . . . . . 10
 TopOn     |
34 | | cnf2 12210 |
. . . . . . . . . 10
    TopOn 
  TopOn            
          |
35 | 28, 33, 29, 34 | syl3anc 1197 |
. . . . . . . . 9
  
          |
36 | | eqid 2113 |
. . . . . . . . . 10
 
     |
37 | 36 | fmpo 6051 |
. . . . . . . . 9
 


            |
38 | 35, 37 | sylibr 133 |
. . . . . . . 8
  
   |
39 | | r2al 2426 |
. . . . . . . 8
 


           |
40 | 38, 39 | sylib 121 |
. . . . . . 7
            |
41 | 40 | 3ad2ant1 983 |
. . . . . 6
 

           |
42 | | eleq1 2175 |
. . . . . . . . 9
 
   |
43 | | eleq1 2175 |
. . . . . . . . 9
 
   |
44 | 42, 43 | bi2anan9 578 |
. . . . . . . 8
 
   

    |
45 | | cnmpt22.d |
. . . . . . . . 9
 
   |
46 | 45 | eleq1d 2181 |
. . . . . . . 8
 
       |
47 | 44, 46 | imbi12d 233 |
. . . . . . 7
 
      
 
      |
48 | 47 | spc2gv 2745 |
. . . . . 6
 
                   |
49 | 26, 41, 26, 48 | syl3c 63 |
. . . . 5
 

   |
50 | 45, 36 | ovmpoga 5852 |
. . . . 5
 
     
     |
51 | 15, 25, 49, 50 | syl3anc 1197 |
. . . 4
 

   
     |
52 | 1, 51 | syl5eqr 2159 |
. . 3
 

  
         |
53 | 52 | mpoeq3dva 5787 |
. 2
  
                |
54 | 2, 3, 7, 17 | cnmpt2t 12298 |
. . 3
  
            |
55 | 2, 3, 54, 29 | cnmpt21f 12297 |
. 2
  
                 |
56 | 53, 55 | eqeltrrd 2190 |
1
  
       |