Proof of Theorem cnmpt22
| Step | Hyp | Ref
| Expression |
| 1 | | df-ov 5928 |
. . . 4
   
     
        |
| 2 | | cnmpt21.j |
. . . . . . . . . 10
 TopOn    |
| 3 | | cnmpt21.k |
. . . . . . . . . 10
 TopOn    |
| 4 | | txtopon 14582 |
. . . . . . . . . 10
  TopOn  TopOn  
  TopOn      |
| 5 | 2, 3, 4 | syl2anc 411 |
. . . . . . . . 9
   TopOn 
    |
| 6 | | cnmpt22.l |
. . . . . . . . 9
 TopOn    |
| 7 | | cnmpt21.a |
. . . . . . . . 9
  
       |
| 8 | | cnf2 14525 |
. . . . . . . . 9
    TopOn 
  TopOn   
     
           |
| 9 | 5, 6, 7, 8 | syl3anc 1249 |
. . . . . . . 8
  
         |
| 10 | | eqid 2196 |
. . . . . . . . 9
       |
| 11 | 10 | fmpo 6268 |
. . . . . . . 8
 

           |
| 12 | 9, 11 | sylibr 134 |
. . . . . . 7
  
  |
| 13 | | rsp2 2547 |
. . . . . . 7
 

 
    |
| 14 | 12, 13 | syl 14 |
. . . . . 6
       |
| 15 | 14 | 3impib 1203 |
. . . . 5
 

  |
| 16 | | cnmpt22.m |
. . . . . . . . 9
 TopOn    |
| 17 | | cnmpt2t.b |
. . . . . . . . 9
  
       |
| 18 | | cnf2 14525 |
. . . . . . . . 9
    TopOn 
  TopOn   
     
           |
| 19 | 5, 16, 17, 18 | syl3anc 1249 |
. . . . . . . 8
  
         |
| 20 | | eqid 2196 |
. . . . . . . . 9
       |
| 21 | 20 | fmpo 6268 |
. . . . . . . 8
 

           |
| 22 | 19, 21 | sylibr 134 |
. . . . . . 7
  
  |
| 23 | | rsp2 2547 |
. . . . . . 7
 

 
    |
| 24 | 22, 23 | syl 14 |
. . . . . 6
       |
| 25 | 24 | 3impib 1203 |
. . . . 5
 

  |
| 26 | 15, 25 | jca 306 |
. . . . . 6
 


   |
| 27 | | txtopon 14582 |
. . . . . . . . . . 11
  TopOn  TopOn  
  TopOn      |
| 28 | 6, 16, 27 | syl2anc 411 |
. . . . . . . . . 10
   TopOn 
    |
| 29 | | cnmpt22.c |
. . . . . . . . . . . 12
  
       |
| 30 | | cntop2 14522 |
. . . . . . . . . . . 12
  
    
  |
| 31 | 29, 30 | syl 14 |
. . . . . . . . . . 11
   |
| 32 | | toptopon2 14339 |
. . . . . . . . . . 11

TopOn     |
| 33 | 31, 32 | sylib 122 |
. . . . . . . . . 10
 TopOn     |
| 34 | | cnf2 14525 |
. . . . . . . . . 10
    TopOn 
  TopOn            
          |
| 35 | 28, 33, 29, 34 | syl3anc 1249 |
. . . . . . . . 9
  
          |
| 36 | | eqid 2196 |
. . . . . . . . . 10
 
     |
| 37 | 36 | fmpo 6268 |
. . . . . . . . 9
 


            |
| 38 | 35, 37 | sylibr 134 |
. . . . . . . 8
  
   |
| 39 | | r2al 2516 |
. . . . . . . 8
 


           |
| 40 | 38, 39 | sylib 122 |
. . . . . . 7
            |
| 41 | 40 | 3ad2ant1 1020 |
. . . . . 6
 

           |
| 42 | | eleq1 2259 |
. . . . . . . . 9
 
   |
| 43 | | eleq1 2259 |
. . . . . . . . 9
 
   |
| 44 | 42, 43 | bi2anan9 606 |
. . . . . . . 8
 
   

    |
| 45 | | cnmpt22.d |
. . . . . . . . 9
 
   |
| 46 | 45 | eleq1d 2265 |
. . . . . . . 8
 
       |
| 47 | 44, 46 | imbi12d 234 |
. . . . . . 7
 
      
 
      |
| 48 | 47 | spc2gv 2855 |
. . . . . 6
 
                   |
| 49 | 26, 41, 26, 48 | syl3c 63 |
. . . . 5
 

   |
| 50 | 45, 36 | ovmpoga 6056 |
. . . . 5
 
     
     |
| 51 | 15, 25, 49, 50 | syl3anc 1249 |
. . . 4
 

   
     |
| 52 | 1, 51 | eqtr3id 2243 |
. . 3
 

  
         |
| 53 | 52 | mpoeq3dva 5990 |
. 2
  
                |
| 54 | 2, 3, 7, 17 | cnmpt2t 14613 |
. . 3
  
            |
| 55 | 2, 3, 54, 29 | cnmpt21f 14612 |
. 2
  
                 |
| 56 | 53, 55 | eqeltrrd 2274 |
1
  
       |