| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cnmptcom | Unicode version | ||
| Description: The argument converse of a continuous function is continuous. (Contributed by Mario Carneiro, 6-Jun-2014.) |
| Ref | Expression |
|---|---|
| cnmptcom.3 |
|
| cnmptcom.4 |
|
| cnmptcom.6 |
|
| Ref | Expression |
|---|---|
| cnmptcom |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnmptcom.3 |
. . . . . . . . 9
| |
| 2 | cnmptcom.4 |
. . . . . . . . 9
| |
| 3 | txtopon 14767 |
. . . . . . . . 9
| |
| 4 | 1, 2, 3 | syl2anc 411 |
. . . . . . . 8
|
| 5 | cnmptcom.6 |
. . . . . . . . . 10
| |
| 6 | cntop2 14707 |
. . . . . . . . . 10
| |
| 7 | 5, 6 | syl 14 |
. . . . . . . . 9
|
| 8 | toptopon2 14524 |
. . . . . . . . 9
| |
| 9 | 7, 8 | sylib 122 |
. . . . . . . 8
|
| 10 | cnf2 14710 |
. . . . . . . 8
| |
| 11 | 4, 9, 5, 10 | syl3anc 1250 |
. . . . . . 7
|
| 12 | eqid 2205 |
. . . . . . . . 9
| |
| 13 | 12 | fmpo 6289 |
. . . . . . . 8
|
| 14 | ralcom 2669 |
. . . . . . . 8
| |
| 15 | 13, 14 | bitr3i 186 |
. . . . . . 7
|
| 16 | 11, 15 | sylib 122 |
. . . . . 6
|
| 17 | eqid 2205 |
. . . . . . 7
| |
| 18 | 17 | fmpo 6289 |
. . . . . 6
|
| 19 | 16, 18 | sylib 122 |
. . . . 5
|
| 20 | 19 | ffnd 5428 |
. . . 4
|
| 21 | fnovim 6056 |
. . . 4
| |
| 22 | 20, 21 | syl 14 |
. . 3
|
| 23 | nfcv 2348 |
. . . . . . 7
| |
| 24 | nfcv 2348 |
. . . . . . 7
| |
| 25 | nfcv 2348 |
. . . . . . 7
| |
| 26 | nfv 1551 |
. . . . . . . 8
| |
| 27 | nfcv 2348 |
. . . . . . . . . 10
| |
| 28 | nfmpo2 6015 |
. . . . . . . . . 10
| |
| 29 | 27, 28, 23 | nfov 5976 |
. . . . . . . . 9
|
| 30 | nfmpo1 6014 |
. . . . . . . . . 10
| |
| 31 | 23, 30, 27 | nfov 5976 |
. . . . . . . . 9
|
| 32 | 29, 31 | nfeq 2356 |
. . . . . . . 8
|
| 33 | 26, 32 | nfim 1595 |
. . . . . . 7
|
| 34 | nfv 1551 |
. . . . . . . 8
| |
| 35 | nfmpo1 6014 |
. . . . . . . . . 10
| |
| 36 | 25, 35, 24 | nfov 5976 |
. . . . . . . . 9
|
| 37 | nfmpo2 6015 |
. . . . . . . . . 10
| |
| 38 | 24, 37, 25 | nfov 5976 |
. . . . . . . . 9
|
| 39 | 36, 38 | nfeq 2356 |
. . . . . . . 8
|
| 40 | 34, 39 | nfim 1595 |
. . . . . . 7
|
| 41 | oveq2 5954 |
. . . . . . . . 9
| |
| 42 | oveq1 5953 |
. . . . . . . . 9
| |
| 43 | 41, 42 | eqeq12d 2220 |
. . . . . . . 8
|
| 44 | 43 | imbi2d 230 |
. . . . . . 7
|
| 45 | oveq1 5953 |
. . . . . . . . 9
| |
| 46 | oveq2 5954 |
. . . . . . . . 9
| |
| 47 | 45, 46 | eqeq12d 2220 |
. . . . . . . 8
|
| 48 | 47 | imbi2d 230 |
. . . . . . 7
|
| 49 | rsp2 2556 |
. . . . . . . . 9
| |
| 50 | 49, 16 | syl11 31 |
. . . . . . . 8
|
| 51 | 12 | ovmpt4g 6070 |
. . . . . . . . . . 11
|
| 52 | 51 | 3com12 1210 |
. . . . . . . . . 10
|
| 53 | 17 | ovmpt4g 6070 |
. . . . . . . . . 10
|
| 54 | 52, 53 | eqtr4d 2241 |
. . . . . . . . 9
|
| 55 | 54 | 3expia 1208 |
. . . . . . . 8
|
| 56 | 50, 55 | syld 45 |
. . . . . . 7
|
| 57 | 23, 24, 25, 33, 40, 44, 48, 56 | vtocl2gaf 2840 |
. . . . . 6
|
| 58 | 57 | com12 30 |
. . . . 5
|
| 59 | 58 | 3impib 1204 |
. . . 4
|
| 60 | 59 | mpoeq3dva 6011 |
. . 3
|
| 61 | 22, 60 | eqtr4d 2241 |
. 2
|
| 62 | 2, 1 | cnmpt2nd 14794 |
. . 3
|
| 63 | 2, 1 | cnmpt1st 14793 |
. . 3
|
| 64 | 2, 1, 62, 63, 5 | cnmpt22f 14800 |
. 2
|
| 65 | 61, 64 | eqeltrd 2282 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-coll 4160 ax-sep 4163 ax-pow 4219 ax-pr 4254 ax-un 4481 ax-setind 4586 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-ral 2489 df-rex 2490 df-reu 2491 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-iun 3929 df-br 4046 df-opab 4107 df-mpt 4108 df-id 4341 df-xp 4682 df-rel 4683 df-cnv 4684 df-co 4685 df-dm 4686 df-rn 4687 df-res 4688 df-ima 4689 df-iota 5233 df-fun 5274 df-fn 5275 df-f 5276 df-f1 5277 df-fo 5278 df-f1o 5279 df-fv 5280 df-ov 5949 df-oprab 5950 df-mpo 5951 df-1st 6228 df-2nd 6229 df-map 6739 df-topgen 13125 df-top 14503 df-topon 14516 df-bases 14548 df-cn 14693 df-tx 14758 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |