ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnmptcom Unicode version

Theorem cnmptcom 13092
Description: The argument converse of a continuous function is continuous. (Contributed by Mario Carneiro, 6-Jun-2014.)
Hypotheses
Ref Expression
cnmptcom.3  |-  ( ph  ->  J  e.  (TopOn `  X ) )
cnmptcom.4  |-  ( ph  ->  K  e.  (TopOn `  Y ) )
cnmptcom.6  |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |->  A )  e.  ( ( J  tX  K
)  Cn  L ) )
Assertion
Ref Expression
cnmptcom  |-  ( ph  ->  ( y  e.  Y ,  x  e.  X  |->  A )  e.  ( ( K  tX  J
)  Cn  L ) )
Distinct variable groups:    x, y, L   
x, X, y    ph, x, y    x, Y, y
Allowed substitution hints:    A( x, y)    J( x, y)    K( x, y)

Proof of Theorem cnmptcom
Dummy variables  z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnmptcom.3 . . . . . . . . 9  |-  ( ph  ->  J  e.  (TopOn `  X ) )
2 cnmptcom.4 . . . . . . . . 9  |-  ( ph  ->  K  e.  (TopOn `  Y ) )
3 txtopon 13056 . . . . . . . . 9  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( J  tX  K )  e.  (TopOn `  ( X  X.  Y
) ) )
41, 2, 3syl2anc 409 . . . . . . . 8  |-  ( ph  ->  ( J  tX  K
)  e.  (TopOn `  ( X  X.  Y
) ) )
5 cnmptcom.6 . . . . . . . . . 10  |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |->  A )  e.  ( ( J  tX  K
)  Cn  L ) )
6 cntop2 12996 . . . . . . . . . 10  |-  ( ( x  e.  X , 
y  e.  Y  |->  A )  e.  ( ( J  tX  K )  Cn  L )  ->  L  e.  Top )
75, 6syl 14 . . . . . . . . 9  |-  ( ph  ->  L  e.  Top )
8 toptopon2 12811 . . . . . . . . 9  |-  ( L  e.  Top  <->  L  e.  (TopOn `  U. L ) )
97, 8sylib 121 . . . . . . . 8  |-  ( ph  ->  L  e.  (TopOn `  U. L ) )
10 cnf2 12999 . . . . . . . 8  |-  ( ( ( J  tX  K
)  e.  (TopOn `  ( X  X.  Y
) )  /\  L  e.  (TopOn `  U. L )  /\  ( x  e.  X ,  y  e.  Y  |->  A )  e.  ( ( J  tX  K )  Cn  L
) )  ->  (
x  e.  X , 
y  e.  Y  |->  A ) : ( X  X.  Y ) --> U. L )
114, 9, 5, 10syl3anc 1233 . . . . . . 7  |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |->  A ) : ( X  X.  Y ) --> U. L )
12 eqid 2170 . . . . . . . . 9  |-  ( x  e.  X ,  y  e.  Y  |->  A )  =  ( x  e.  X ,  y  e.  Y  |->  A )
1312fmpo 6180 . . . . . . . 8  |-  ( A. x  e.  X  A. y  e.  Y  A  e.  U. L  <->  ( x  e.  X ,  y  e.  Y  |->  A ) : ( X  X.  Y
) --> U. L )
14 ralcom 2633 . . . . . . . 8  |-  ( A. x  e.  X  A. y  e.  Y  A  e.  U. L  <->  A. y  e.  Y  A. x  e.  X  A  e.  U. L )
1513, 14bitr3i 185 . . . . . . 7  |-  ( ( x  e.  X , 
y  e.  Y  |->  A ) : ( X  X.  Y ) --> U. L  <->  A. y  e.  Y  A. x  e.  X  A  e.  U. L )
1611, 15sylib 121 . . . . . 6  |-  ( ph  ->  A. y  e.  Y  A. x  e.  X  A  e.  U. L )
17 eqid 2170 . . . . . . 7  |-  ( y  e.  Y ,  x  e.  X  |->  A )  =  ( y  e.  Y ,  x  e.  X  |->  A )
1817fmpo 6180 . . . . . 6  |-  ( A. y  e.  Y  A. x  e.  X  A  e.  U. L  <->  ( y  e.  Y ,  x  e.  X  |->  A ) : ( Y  X.  X
) --> U. L )
1916, 18sylib 121 . . . . 5  |-  ( ph  ->  ( y  e.  Y ,  x  e.  X  |->  A ) : ( Y  X.  X ) --> U. L )
2019ffnd 5348 . . . 4  |-  ( ph  ->  ( y  e.  Y ,  x  e.  X  |->  A )  Fn  ( Y  X.  X ) )
21 fnovim 5961 . . . 4  |-  ( ( y  e.  Y ,  x  e.  X  |->  A )  Fn  ( Y  X.  X )  -> 
( y  e.  Y ,  x  e.  X  |->  A )  =  ( z  e.  Y ,  w  e.  X  |->  ( z ( y  e.  Y ,  x  e.  X  |->  A ) w ) ) )
2220, 21syl 14 . . 3  |-  ( ph  ->  ( y  e.  Y ,  x  e.  X  |->  A )  =  ( z  e.  Y ,  w  e.  X  |->  ( z ( y  e.  Y ,  x  e.  X  |->  A ) w ) ) )
23 nfcv 2312 . . . . . . 7  |-  F/_ y
z
24 nfcv 2312 . . . . . . 7  |-  F/_ x
z
25 nfcv 2312 . . . . . . 7  |-  F/_ x w
26 nfv 1521 . . . . . . . 8  |-  F/ y
ph
27 nfcv 2312 . . . . . . . . . 10  |-  F/_ y
x
28 nfmpo2 5921 . . . . . . . . . 10  |-  F/_ y
( x  e.  X ,  y  e.  Y  |->  A )
2927, 28, 23nfov 5883 . . . . . . . . 9  |-  F/_ y
( x ( x  e.  X ,  y  e.  Y  |->  A ) z )
30 nfmpo1 5920 . . . . . . . . . 10  |-  F/_ y
( y  e.  Y ,  x  e.  X  |->  A )
3123, 30, 27nfov 5883 . . . . . . . . 9  |-  F/_ y
( z ( y  e.  Y ,  x  e.  X  |->  A ) x )
3229, 31nfeq 2320 . . . . . . . 8  |-  F/ y ( x ( x  e.  X ,  y  e.  Y  |->  A ) z )  =  ( z ( y  e.  Y ,  x  e.  X  |->  A ) x )
3326, 32nfim 1565 . . . . . . 7  |-  F/ y ( ph  ->  (
x ( x  e.  X ,  y  e.  Y  |->  A ) z )  =  ( z ( y  e.  Y ,  x  e.  X  |->  A ) x ) )
34 nfv 1521 . . . . . . . 8  |-  F/ x ph
35 nfmpo1 5920 . . . . . . . . . 10  |-  F/_ x
( x  e.  X ,  y  e.  Y  |->  A )
3625, 35, 24nfov 5883 . . . . . . . . 9  |-  F/_ x
( w ( x  e.  X ,  y  e.  Y  |->  A ) z )
37 nfmpo2 5921 . . . . . . . . . 10  |-  F/_ x
( y  e.  Y ,  x  e.  X  |->  A )
3824, 37, 25nfov 5883 . . . . . . . . 9  |-  F/_ x
( z ( y  e.  Y ,  x  e.  X  |->  A ) w )
3936, 38nfeq 2320 . . . . . . . 8  |-  F/ x
( w ( x  e.  X ,  y  e.  Y  |->  A ) z )  =  ( z ( y  e.  Y ,  x  e.  X  |->  A ) w )
4034, 39nfim 1565 . . . . . . 7  |-  F/ x
( ph  ->  ( w ( x  e.  X ,  y  e.  Y  |->  A ) z )  =  ( z ( y  e.  Y ,  x  e.  X  |->  A ) w ) )
41 oveq2 5861 . . . . . . . . 9  |-  ( y  =  z  ->  (
x ( x  e.  X ,  y  e.  Y  |->  A ) y )  =  ( x ( x  e.  X ,  y  e.  Y  |->  A ) z ) )
42 oveq1 5860 . . . . . . . . 9  |-  ( y  =  z  ->  (
y ( y  e.  Y ,  x  e.  X  |->  A ) x )  =  ( z ( y  e.  Y ,  x  e.  X  |->  A ) x ) )
4341, 42eqeq12d 2185 . . . . . . . 8  |-  ( y  =  z  ->  (
( x ( x  e.  X ,  y  e.  Y  |->  A ) y )  =  ( y ( y  e.  Y ,  x  e.  X  |->  A ) x )  <->  ( x ( x  e.  X , 
y  e.  Y  |->  A ) z )  =  ( z ( y  e.  Y ,  x  e.  X  |->  A ) x ) ) )
4443imbi2d 229 . . . . . . 7  |-  ( y  =  z  ->  (
( ph  ->  ( x ( x  e.  X ,  y  e.  Y  |->  A ) y )  =  ( y ( y  e.  Y ,  x  e.  X  |->  A ) x ) )  <-> 
( ph  ->  ( x ( x  e.  X ,  y  e.  Y  |->  A ) z )  =  ( z ( y  e.  Y ,  x  e.  X  |->  A ) x ) ) ) )
45 oveq1 5860 . . . . . . . . 9  |-  ( x  =  w  ->  (
x ( x  e.  X ,  y  e.  Y  |->  A ) z )  =  ( w ( x  e.  X ,  y  e.  Y  |->  A ) z ) )
46 oveq2 5861 . . . . . . . . 9  |-  ( x  =  w  ->  (
z ( y  e.  Y ,  x  e.  X  |->  A ) x )  =  ( z ( y  e.  Y ,  x  e.  X  |->  A ) w ) )
4745, 46eqeq12d 2185 . . . . . . . 8  |-  ( x  =  w  ->  (
( x ( x  e.  X ,  y  e.  Y  |->  A ) z )  =  ( z ( y  e.  Y ,  x  e.  X  |->  A ) x )  <->  ( w ( x  e.  X , 
y  e.  Y  |->  A ) z )  =  ( z ( y  e.  Y ,  x  e.  X  |->  A ) w ) ) )
4847imbi2d 229 . . . . . . 7  |-  ( x  =  w  ->  (
( ph  ->  ( x ( x  e.  X ,  y  e.  Y  |->  A ) z )  =  ( z ( y  e.  Y ,  x  e.  X  |->  A ) x ) )  <-> 
( ph  ->  ( w ( x  e.  X ,  y  e.  Y  |->  A ) z )  =  ( z ( y  e.  Y ,  x  e.  X  |->  A ) w ) ) ) )
49 rsp2 2520 . . . . . . . . 9  |-  ( A. y  e.  Y  A. x  e.  X  A  e.  U. L  ->  (
( y  e.  Y  /\  x  e.  X
)  ->  A  e.  U. L ) )
5049, 16syl11 31 . . . . . . . 8  |-  ( ( y  e.  Y  /\  x  e.  X )  ->  ( ph  ->  A  e.  U. L ) )
5112ovmpt4g 5975 . . . . . . . . . . 11  |-  ( ( x  e.  X  /\  y  e.  Y  /\  A  e.  U. L )  ->  ( x ( x  e.  X , 
y  e.  Y  |->  A ) y )  =  A )
52513com12 1202 . . . . . . . . . 10  |-  ( ( y  e.  Y  /\  x  e.  X  /\  A  e.  U. L )  ->  ( x ( x  e.  X , 
y  e.  Y  |->  A ) y )  =  A )
5317ovmpt4g 5975 . . . . . . . . . 10  |-  ( ( y  e.  Y  /\  x  e.  X  /\  A  e.  U. L )  ->  ( y ( y  e.  Y ,  x  e.  X  |->  A ) x )  =  A )
5452, 53eqtr4d 2206 . . . . . . . . 9  |-  ( ( y  e.  Y  /\  x  e.  X  /\  A  e.  U. L )  ->  ( x ( x  e.  X , 
y  e.  Y  |->  A ) y )  =  ( y ( y  e.  Y ,  x  e.  X  |->  A ) x ) )
55543expia 1200 . . . . . . . 8  |-  ( ( y  e.  Y  /\  x  e.  X )  ->  ( A  e.  U. L  ->  ( x ( x  e.  X , 
y  e.  Y  |->  A ) y )  =  ( y ( y  e.  Y ,  x  e.  X  |->  A ) x ) ) )
5650, 55syld 45 . . . . . . 7  |-  ( ( y  e.  Y  /\  x  e.  X )  ->  ( ph  ->  (
x ( x  e.  X ,  y  e.  Y  |->  A ) y )  =  ( y ( y  e.  Y ,  x  e.  X  |->  A ) x ) ) )
5723, 24, 25, 33, 40, 44, 48, 56vtocl2gaf 2797 . . . . . 6  |-  ( ( z  e.  Y  /\  w  e.  X )  ->  ( ph  ->  (
w ( x  e.  X ,  y  e.  Y  |->  A ) z )  =  ( z ( y  e.  Y ,  x  e.  X  |->  A ) w ) ) )
5857com12 30 . . . . 5  |-  ( ph  ->  ( ( z  e.  Y  /\  w  e.  X )  ->  (
w ( x  e.  X ,  y  e.  Y  |->  A ) z )  =  ( z ( y  e.  Y ,  x  e.  X  |->  A ) w ) ) )
59583impib 1196 . . . 4  |-  ( (
ph  /\  z  e.  Y  /\  w  e.  X
)  ->  ( w
( x  e.  X ,  y  e.  Y  |->  A ) z )  =  ( z ( y  e.  Y ,  x  e.  X  |->  A ) w ) )
6059mpoeq3dva 5917 . . 3  |-  ( ph  ->  ( z  e.  Y ,  w  e.  X  |->  ( w ( x  e.  X ,  y  e.  Y  |->  A ) z ) )  =  ( z  e.  Y ,  w  e.  X  |->  ( z ( y  e.  Y ,  x  e.  X  |->  A ) w ) ) )
6122, 60eqtr4d 2206 . 2  |-  ( ph  ->  ( y  e.  Y ,  x  e.  X  |->  A )  =  ( z  e.  Y ,  w  e.  X  |->  ( w ( x  e.  X ,  y  e.  Y  |->  A ) z ) ) )
622, 1cnmpt2nd 13083 . . 3  |-  ( ph  ->  ( z  e.  Y ,  w  e.  X  |->  w )  e.  ( ( K  tX  J
)  Cn  J ) )
632, 1cnmpt1st 13082 . . 3  |-  ( ph  ->  ( z  e.  Y ,  w  e.  X  |->  z )  e.  ( ( K  tX  J
)  Cn  K ) )
642, 1, 62, 63, 5cnmpt22f 13089 . 2  |-  ( ph  ->  ( z  e.  Y ,  w  e.  X  |->  ( w ( x  e.  X ,  y  e.  Y  |->  A ) z ) )  e.  ( ( K  tX  J )  Cn  L
) )
6561, 64eqeltrd 2247 1  |-  ( ph  ->  ( y  e.  Y ,  x  e.  X  |->  A )  e.  ( ( K  tX  J
)  Cn  L ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    /\ w3a 973    = wceq 1348    e. wcel 2141   A.wral 2448   U.cuni 3796    X. cxp 4609    Fn wfn 5193   -->wf 5194   ` cfv 5198  (class class class)co 5853    e. cmpo 5855   Topctop 12789  TopOnctopon 12802    Cn ccn 12979    tX ctx 13046
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-map 6628  df-topgen 12600  df-top 12790  df-topon 12803  df-bases 12835  df-cn 12982  df-tx 13047
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator