| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cnmptcom | Unicode version | ||
| Description: The argument converse of a continuous function is continuous. (Contributed by Mario Carneiro, 6-Jun-2014.) |
| Ref | Expression |
|---|---|
| cnmptcom.3 |
|
| cnmptcom.4 |
|
| cnmptcom.6 |
|
| Ref | Expression |
|---|---|
| cnmptcom |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnmptcom.3 |
. . . . . . . . 9
| |
| 2 | cnmptcom.4 |
. . . . . . . . 9
| |
| 3 | txtopon 14936 |
. . . . . . . . 9
| |
| 4 | 1, 2, 3 | syl2anc 411 |
. . . . . . . 8
|
| 5 | cnmptcom.6 |
. . . . . . . . . 10
| |
| 6 | cntop2 14876 |
. . . . . . . . . 10
| |
| 7 | 5, 6 | syl 14 |
. . . . . . . . 9
|
| 8 | toptopon2 14693 |
. . . . . . . . 9
| |
| 9 | 7, 8 | sylib 122 |
. . . . . . . 8
|
| 10 | cnf2 14879 |
. . . . . . . 8
| |
| 11 | 4, 9, 5, 10 | syl3anc 1271 |
. . . . . . 7
|
| 12 | eqid 2229 |
. . . . . . . . 9
| |
| 13 | 12 | fmpo 6347 |
. . . . . . . 8
|
| 14 | ralcom 2694 |
. . . . . . . 8
| |
| 15 | 13, 14 | bitr3i 186 |
. . . . . . 7
|
| 16 | 11, 15 | sylib 122 |
. . . . . 6
|
| 17 | eqid 2229 |
. . . . . . 7
| |
| 18 | 17 | fmpo 6347 |
. . . . . 6
|
| 19 | 16, 18 | sylib 122 |
. . . . 5
|
| 20 | 19 | ffnd 5474 |
. . . 4
|
| 21 | fnovim 6113 |
. . . 4
| |
| 22 | 20, 21 | syl 14 |
. . 3
|
| 23 | nfcv 2372 |
. . . . . . 7
| |
| 24 | nfcv 2372 |
. . . . . . 7
| |
| 25 | nfcv 2372 |
. . . . . . 7
| |
| 26 | nfv 1574 |
. . . . . . . 8
| |
| 27 | nfcv 2372 |
. . . . . . . . . 10
| |
| 28 | nfmpo2 6072 |
. . . . . . . . . 10
| |
| 29 | 27, 28, 23 | nfov 6031 |
. . . . . . . . 9
|
| 30 | nfmpo1 6071 |
. . . . . . . . . 10
| |
| 31 | 23, 30, 27 | nfov 6031 |
. . . . . . . . 9
|
| 32 | 29, 31 | nfeq 2380 |
. . . . . . . 8
|
| 33 | 26, 32 | nfim 1618 |
. . . . . . 7
|
| 34 | nfv 1574 |
. . . . . . . 8
| |
| 35 | nfmpo1 6071 |
. . . . . . . . . 10
| |
| 36 | 25, 35, 24 | nfov 6031 |
. . . . . . . . 9
|
| 37 | nfmpo2 6072 |
. . . . . . . . . 10
| |
| 38 | 24, 37, 25 | nfov 6031 |
. . . . . . . . 9
|
| 39 | 36, 38 | nfeq 2380 |
. . . . . . . 8
|
| 40 | 34, 39 | nfim 1618 |
. . . . . . 7
|
| 41 | oveq2 6009 |
. . . . . . . . 9
| |
| 42 | oveq1 6008 |
. . . . . . . . 9
| |
| 43 | 41, 42 | eqeq12d 2244 |
. . . . . . . 8
|
| 44 | 43 | imbi2d 230 |
. . . . . . 7
|
| 45 | oveq1 6008 |
. . . . . . . . 9
| |
| 46 | oveq2 6009 |
. . . . . . . . 9
| |
| 47 | 45, 46 | eqeq12d 2244 |
. . . . . . . 8
|
| 48 | 47 | imbi2d 230 |
. . . . . . 7
|
| 49 | rsp2 2580 |
. . . . . . . . 9
| |
| 50 | 49, 16 | syl11 31 |
. . . . . . . 8
|
| 51 | 12 | ovmpt4g 6127 |
. . . . . . . . . . 11
|
| 52 | 51 | 3com12 1231 |
. . . . . . . . . 10
|
| 53 | 17 | ovmpt4g 6127 |
. . . . . . . . . 10
|
| 54 | 52, 53 | eqtr4d 2265 |
. . . . . . . . 9
|
| 55 | 54 | 3expia 1229 |
. . . . . . . 8
|
| 56 | 50, 55 | syld 45 |
. . . . . . 7
|
| 57 | 23, 24, 25, 33, 40, 44, 48, 56 | vtocl2gaf 2868 |
. . . . . 6
|
| 58 | 57 | com12 30 |
. . . . 5
|
| 59 | 58 | 3impib 1225 |
. . . 4
|
| 60 | 59 | mpoeq3dva 6068 |
. . 3
|
| 61 | 22, 60 | eqtr4d 2265 |
. 2
|
| 62 | 2, 1 | cnmpt2nd 14963 |
. . 3
|
| 63 | 2, 1 | cnmpt1st 14962 |
. . 3
|
| 64 | 2, 1, 62, 63, 5 | cnmpt22f 14969 |
. 2
|
| 65 | 61, 64 | eqeltrd 2306 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-ov 6004 df-oprab 6005 df-mpo 6006 df-1st 6286 df-2nd 6287 df-map 6797 df-topgen 13293 df-top 14672 df-topon 14685 df-bases 14717 df-cn 14862 df-tx 14927 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |