ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnmptcom Unicode version

Theorem cnmptcom 12938
Description: The argument converse of a continuous function is continuous. (Contributed by Mario Carneiro, 6-Jun-2014.)
Hypotheses
Ref Expression
cnmptcom.3  |-  ( ph  ->  J  e.  (TopOn `  X ) )
cnmptcom.4  |-  ( ph  ->  K  e.  (TopOn `  Y ) )
cnmptcom.6  |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |->  A )  e.  ( ( J  tX  K
)  Cn  L ) )
Assertion
Ref Expression
cnmptcom  |-  ( ph  ->  ( y  e.  Y ,  x  e.  X  |->  A )  e.  ( ( K  tX  J
)  Cn  L ) )
Distinct variable groups:    x, y, L   
x, X, y    ph, x, y    x, Y, y
Allowed substitution hints:    A( x, y)    J( x, y)    K( x, y)

Proof of Theorem cnmptcom
Dummy variables  z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnmptcom.3 . . . . . . . . 9  |-  ( ph  ->  J  e.  (TopOn `  X ) )
2 cnmptcom.4 . . . . . . . . 9  |-  ( ph  ->  K  e.  (TopOn `  Y ) )
3 txtopon 12902 . . . . . . . . 9  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( J  tX  K )  e.  (TopOn `  ( X  X.  Y
) ) )
41, 2, 3syl2anc 409 . . . . . . . 8  |-  ( ph  ->  ( J  tX  K
)  e.  (TopOn `  ( X  X.  Y
) ) )
5 cnmptcom.6 . . . . . . . . . 10  |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |->  A )  e.  ( ( J  tX  K
)  Cn  L ) )
6 cntop2 12842 . . . . . . . . . 10  |-  ( ( x  e.  X , 
y  e.  Y  |->  A )  e.  ( ( J  tX  K )  Cn  L )  ->  L  e.  Top )
75, 6syl 14 . . . . . . . . 9  |-  ( ph  ->  L  e.  Top )
8 toptopon2 12657 . . . . . . . . 9  |-  ( L  e.  Top  <->  L  e.  (TopOn `  U. L ) )
97, 8sylib 121 . . . . . . . 8  |-  ( ph  ->  L  e.  (TopOn `  U. L ) )
10 cnf2 12845 . . . . . . . 8  |-  ( ( ( J  tX  K
)  e.  (TopOn `  ( X  X.  Y
) )  /\  L  e.  (TopOn `  U. L )  /\  ( x  e.  X ,  y  e.  Y  |->  A )  e.  ( ( J  tX  K )  Cn  L
) )  ->  (
x  e.  X , 
y  e.  Y  |->  A ) : ( X  X.  Y ) --> U. L )
114, 9, 5, 10syl3anc 1228 . . . . . . 7  |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |->  A ) : ( X  X.  Y ) --> U. L )
12 eqid 2165 . . . . . . . . 9  |-  ( x  e.  X ,  y  e.  Y  |->  A )  =  ( x  e.  X ,  y  e.  Y  |->  A )
1312fmpo 6169 . . . . . . . 8  |-  ( A. x  e.  X  A. y  e.  Y  A  e.  U. L  <->  ( x  e.  X ,  y  e.  Y  |->  A ) : ( X  X.  Y
) --> U. L )
14 ralcom 2629 . . . . . . . 8  |-  ( A. x  e.  X  A. y  e.  Y  A  e.  U. L  <->  A. y  e.  Y  A. x  e.  X  A  e.  U. L )
1513, 14bitr3i 185 . . . . . . 7  |-  ( ( x  e.  X , 
y  e.  Y  |->  A ) : ( X  X.  Y ) --> U. L  <->  A. y  e.  Y  A. x  e.  X  A  e.  U. L )
1611, 15sylib 121 . . . . . 6  |-  ( ph  ->  A. y  e.  Y  A. x  e.  X  A  e.  U. L )
17 eqid 2165 . . . . . . 7  |-  ( y  e.  Y ,  x  e.  X  |->  A )  =  ( y  e.  Y ,  x  e.  X  |->  A )
1817fmpo 6169 . . . . . 6  |-  ( A. y  e.  Y  A. x  e.  X  A  e.  U. L  <->  ( y  e.  Y ,  x  e.  X  |->  A ) : ( Y  X.  X
) --> U. L )
1916, 18sylib 121 . . . . 5  |-  ( ph  ->  ( y  e.  Y ,  x  e.  X  |->  A ) : ( Y  X.  X ) --> U. L )
2019ffnd 5338 . . . 4  |-  ( ph  ->  ( y  e.  Y ,  x  e.  X  |->  A )  Fn  ( Y  X.  X ) )
21 fnovim 5950 . . . 4  |-  ( ( y  e.  Y ,  x  e.  X  |->  A )  Fn  ( Y  X.  X )  -> 
( y  e.  Y ,  x  e.  X  |->  A )  =  ( z  e.  Y ,  w  e.  X  |->  ( z ( y  e.  Y ,  x  e.  X  |->  A ) w ) ) )
2220, 21syl 14 . . 3  |-  ( ph  ->  ( y  e.  Y ,  x  e.  X  |->  A )  =  ( z  e.  Y ,  w  e.  X  |->  ( z ( y  e.  Y ,  x  e.  X  |->  A ) w ) ) )
23 nfcv 2308 . . . . . . 7  |-  F/_ y
z
24 nfcv 2308 . . . . . . 7  |-  F/_ x
z
25 nfcv 2308 . . . . . . 7  |-  F/_ x w
26 nfv 1516 . . . . . . . 8  |-  F/ y
ph
27 nfcv 2308 . . . . . . . . . 10  |-  F/_ y
x
28 nfmpo2 5910 . . . . . . . . . 10  |-  F/_ y
( x  e.  X ,  y  e.  Y  |->  A )
2927, 28, 23nfov 5872 . . . . . . . . 9  |-  F/_ y
( x ( x  e.  X ,  y  e.  Y  |->  A ) z )
30 nfmpo1 5909 . . . . . . . . . 10  |-  F/_ y
( y  e.  Y ,  x  e.  X  |->  A )
3123, 30, 27nfov 5872 . . . . . . . . 9  |-  F/_ y
( z ( y  e.  Y ,  x  e.  X  |->  A ) x )
3229, 31nfeq 2316 . . . . . . . 8  |-  F/ y ( x ( x  e.  X ,  y  e.  Y  |->  A ) z )  =  ( z ( y  e.  Y ,  x  e.  X  |->  A ) x )
3326, 32nfim 1560 . . . . . . 7  |-  F/ y ( ph  ->  (
x ( x  e.  X ,  y  e.  Y  |->  A ) z )  =  ( z ( y  e.  Y ,  x  e.  X  |->  A ) x ) )
34 nfv 1516 . . . . . . . 8  |-  F/ x ph
35 nfmpo1 5909 . . . . . . . . . 10  |-  F/_ x
( x  e.  X ,  y  e.  Y  |->  A )
3625, 35, 24nfov 5872 . . . . . . . . 9  |-  F/_ x
( w ( x  e.  X ,  y  e.  Y  |->  A ) z )
37 nfmpo2 5910 . . . . . . . . . 10  |-  F/_ x
( y  e.  Y ,  x  e.  X  |->  A )
3824, 37, 25nfov 5872 . . . . . . . . 9  |-  F/_ x
( z ( y  e.  Y ,  x  e.  X  |->  A ) w )
3936, 38nfeq 2316 . . . . . . . 8  |-  F/ x
( w ( x  e.  X ,  y  e.  Y  |->  A ) z )  =  ( z ( y  e.  Y ,  x  e.  X  |->  A ) w )
4034, 39nfim 1560 . . . . . . 7  |-  F/ x
( ph  ->  ( w ( x  e.  X ,  y  e.  Y  |->  A ) z )  =  ( z ( y  e.  Y ,  x  e.  X  |->  A ) w ) )
41 oveq2 5850 . . . . . . . . 9  |-  ( y  =  z  ->  (
x ( x  e.  X ,  y  e.  Y  |->  A ) y )  =  ( x ( x  e.  X ,  y  e.  Y  |->  A ) z ) )
42 oveq1 5849 . . . . . . . . 9  |-  ( y  =  z  ->  (
y ( y  e.  Y ,  x  e.  X  |->  A ) x )  =  ( z ( y  e.  Y ,  x  e.  X  |->  A ) x ) )
4341, 42eqeq12d 2180 . . . . . . . 8  |-  ( y  =  z  ->  (
( x ( x  e.  X ,  y  e.  Y  |->  A ) y )  =  ( y ( y  e.  Y ,  x  e.  X  |->  A ) x )  <->  ( x ( x  e.  X , 
y  e.  Y  |->  A ) z )  =  ( z ( y  e.  Y ,  x  e.  X  |->  A ) x ) ) )
4443imbi2d 229 . . . . . . 7  |-  ( y  =  z  ->  (
( ph  ->  ( x ( x  e.  X ,  y  e.  Y  |->  A ) y )  =  ( y ( y  e.  Y ,  x  e.  X  |->  A ) x ) )  <-> 
( ph  ->  ( x ( x  e.  X ,  y  e.  Y  |->  A ) z )  =  ( z ( y  e.  Y ,  x  e.  X  |->  A ) x ) ) ) )
45 oveq1 5849 . . . . . . . . 9  |-  ( x  =  w  ->  (
x ( x  e.  X ,  y  e.  Y  |->  A ) z )  =  ( w ( x  e.  X ,  y  e.  Y  |->  A ) z ) )
46 oveq2 5850 . . . . . . . . 9  |-  ( x  =  w  ->  (
z ( y  e.  Y ,  x  e.  X  |->  A ) x )  =  ( z ( y  e.  Y ,  x  e.  X  |->  A ) w ) )
4745, 46eqeq12d 2180 . . . . . . . 8  |-  ( x  =  w  ->  (
( x ( x  e.  X ,  y  e.  Y  |->  A ) z )  =  ( z ( y  e.  Y ,  x  e.  X  |->  A ) x )  <->  ( w ( x  e.  X , 
y  e.  Y  |->  A ) z )  =  ( z ( y  e.  Y ,  x  e.  X  |->  A ) w ) ) )
4847imbi2d 229 . . . . . . 7  |-  ( x  =  w  ->  (
( ph  ->  ( x ( x  e.  X ,  y  e.  Y  |->  A ) z )  =  ( z ( y  e.  Y ,  x  e.  X  |->  A ) x ) )  <-> 
( ph  ->  ( w ( x  e.  X ,  y  e.  Y  |->  A ) z )  =  ( z ( y  e.  Y ,  x  e.  X  |->  A ) w ) ) ) )
49 rsp2 2516 . . . . . . . . 9  |-  ( A. y  e.  Y  A. x  e.  X  A  e.  U. L  ->  (
( y  e.  Y  /\  x  e.  X
)  ->  A  e.  U. L ) )
5049, 16syl11 31 . . . . . . . 8  |-  ( ( y  e.  Y  /\  x  e.  X )  ->  ( ph  ->  A  e.  U. L ) )
5112ovmpt4g 5964 . . . . . . . . . . 11  |-  ( ( x  e.  X  /\  y  e.  Y  /\  A  e.  U. L )  ->  ( x ( x  e.  X , 
y  e.  Y  |->  A ) y )  =  A )
52513com12 1197 . . . . . . . . . 10  |-  ( ( y  e.  Y  /\  x  e.  X  /\  A  e.  U. L )  ->  ( x ( x  e.  X , 
y  e.  Y  |->  A ) y )  =  A )
5317ovmpt4g 5964 . . . . . . . . . 10  |-  ( ( y  e.  Y  /\  x  e.  X  /\  A  e.  U. L )  ->  ( y ( y  e.  Y ,  x  e.  X  |->  A ) x )  =  A )
5452, 53eqtr4d 2201 . . . . . . . . 9  |-  ( ( y  e.  Y  /\  x  e.  X  /\  A  e.  U. L )  ->  ( x ( x  e.  X , 
y  e.  Y  |->  A ) y )  =  ( y ( y  e.  Y ,  x  e.  X  |->  A ) x ) )
55543expia 1195 . . . . . . . 8  |-  ( ( y  e.  Y  /\  x  e.  X )  ->  ( A  e.  U. L  ->  ( x ( x  e.  X , 
y  e.  Y  |->  A ) y )  =  ( y ( y  e.  Y ,  x  e.  X  |->  A ) x ) ) )
5650, 55syld 45 . . . . . . 7  |-  ( ( y  e.  Y  /\  x  e.  X )  ->  ( ph  ->  (
x ( x  e.  X ,  y  e.  Y  |->  A ) y )  =  ( y ( y  e.  Y ,  x  e.  X  |->  A ) x ) ) )
5723, 24, 25, 33, 40, 44, 48, 56vtocl2gaf 2793 . . . . . 6  |-  ( ( z  e.  Y  /\  w  e.  X )  ->  ( ph  ->  (
w ( x  e.  X ,  y  e.  Y  |->  A ) z )  =  ( z ( y  e.  Y ,  x  e.  X  |->  A ) w ) ) )
5857com12 30 . . . . 5  |-  ( ph  ->  ( ( z  e.  Y  /\  w  e.  X )  ->  (
w ( x  e.  X ,  y  e.  Y  |->  A ) z )  =  ( z ( y  e.  Y ,  x  e.  X  |->  A ) w ) ) )
59583impib 1191 . . . 4  |-  ( (
ph  /\  z  e.  Y  /\  w  e.  X
)  ->  ( w
( x  e.  X ,  y  e.  Y  |->  A ) z )  =  ( z ( y  e.  Y ,  x  e.  X  |->  A ) w ) )
6059mpoeq3dva 5906 . . 3  |-  ( ph  ->  ( z  e.  Y ,  w  e.  X  |->  ( w ( x  e.  X ,  y  e.  Y  |->  A ) z ) )  =  ( z  e.  Y ,  w  e.  X  |->  ( z ( y  e.  Y ,  x  e.  X  |->  A ) w ) ) )
6122, 60eqtr4d 2201 . 2  |-  ( ph  ->  ( y  e.  Y ,  x  e.  X  |->  A )  =  ( z  e.  Y ,  w  e.  X  |->  ( w ( x  e.  X ,  y  e.  Y  |->  A ) z ) ) )
622, 1cnmpt2nd 12929 . . 3  |-  ( ph  ->  ( z  e.  Y ,  w  e.  X  |->  w )  e.  ( ( K  tX  J
)  Cn  J ) )
632, 1cnmpt1st 12928 . . 3  |-  ( ph  ->  ( z  e.  Y ,  w  e.  X  |->  z )  e.  ( ( K  tX  J
)  Cn  K ) )
642, 1, 62, 63, 5cnmpt22f 12935 . 2  |-  ( ph  ->  ( z  e.  Y ,  w  e.  X  |->  ( w ( x  e.  X ,  y  e.  Y  |->  A ) z ) )  e.  ( ( K  tX  J )  Cn  L
) )
6561, 64eqeltrd 2243 1  |-  ( ph  ->  ( y  e.  Y ,  x  e.  X  |->  A )  e.  ( ( K  tX  J
)  Cn  L ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    /\ w3a 968    = wceq 1343    e. wcel 2136   A.wral 2444   U.cuni 3789    X. cxp 4602    Fn wfn 5183   -->wf 5184   ` cfv 5188  (class class class)co 5842    e. cmpo 5844   Topctop 12635  TopOnctopon 12648    Cn ccn 12825    tX ctx 12892
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-map 6616  df-topgen 12577  df-top 12636  df-topon 12649  df-bases 12681  df-cn 12828  df-tx 12893
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator