| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cnmptcom | Unicode version | ||
| Description: The argument converse of a continuous function is continuous. (Contributed by Mario Carneiro, 6-Jun-2014.) |
| Ref | Expression |
|---|---|
| cnmptcom.3 |
|
| cnmptcom.4 |
|
| cnmptcom.6 |
|
| Ref | Expression |
|---|---|
| cnmptcom |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnmptcom.3 |
. . . . . . . . 9
| |
| 2 | cnmptcom.4 |
. . . . . . . . 9
| |
| 3 | txtopon 14849 |
. . . . . . . . 9
| |
| 4 | 1, 2, 3 | syl2anc 411 |
. . . . . . . 8
|
| 5 | cnmptcom.6 |
. . . . . . . . . 10
| |
| 6 | cntop2 14789 |
. . . . . . . . . 10
| |
| 7 | 5, 6 | syl 14 |
. . . . . . . . 9
|
| 8 | toptopon2 14606 |
. . . . . . . . 9
| |
| 9 | 7, 8 | sylib 122 |
. . . . . . . 8
|
| 10 | cnf2 14792 |
. . . . . . . 8
| |
| 11 | 4, 9, 5, 10 | syl3anc 1250 |
. . . . . . 7
|
| 12 | eqid 2207 |
. . . . . . . . 9
| |
| 13 | 12 | fmpo 6310 |
. . . . . . . 8
|
| 14 | ralcom 2671 |
. . . . . . . 8
| |
| 15 | 13, 14 | bitr3i 186 |
. . . . . . 7
|
| 16 | 11, 15 | sylib 122 |
. . . . . 6
|
| 17 | eqid 2207 |
. . . . . . 7
| |
| 18 | 17 | fmpo 6310 |
. . . . . 6
|
| 19 | 16, 18 | sylib 122 |
. . . . 5
|
| 20 | 19 | ffnd 5446 |
. . . 4
|
| 21 | fnovim 6077 |
. . . 4
| |
| 22 | 20, 21 | syl 14 |
. . 3
|
| 23 | nfcv 2350 |
. . . . . . 7
| |
| 24 | nfcv 2350 |
. . . . . . 7
| |
| 25 | nfcv 2350 |
. . . . . . 7
| |
| 26 | nfv 1552 |
. . . . . . . 8
| |
| 27 | nfcv 2350 |
. . . . . . . . . 10
| |
| 28 | nfmpo2 6036 |
. . . . . . . . . 10
| |
| 29 | 27, 28, 23 | nfov 5997 |
. . . . . . . . 9
|
| 30 | nfmpo1 6035 |
. . . . . . . . . 10
| |
| 31 | 23, 30, 27 | nfov 5997 |
. . . . . . . . 9
|
| 32 | 29, 31 | nfeq 2358 |
. . . . . . . 8
|
| 33 | 26, 32 | nfim 1596 |
. . . . . . 7
|
| 34 | nfv 1552 |
. . . . . . . 8
| |
| 35 | nfmpo1 6035 |
. . . . . . . . . 10
| |
| 36 | 25, 35, 24 | nfov 5997 |
. . . . . . . . 9
|
| 37 | nfmpo2 6036 |
. . . . . . . . . 10
| |
| 38 | 24, 37, 25 | nfov 5997 |
. . . . . . . . 9
|
| 39 | 36, 38 | nfeq 2358 |
. . . . . . . 8
|
| 40 | 34, 39 | nfim 1596 |
. . . . . . 7
|
| 41 | oveq2 5975 |
. . . . . . . . 9
| |
| 42 | oveq1 5974 |
. . . . . . . . 9
| |
| 43 | 41, 42 | eqeq12d 2222 |
. . . . . . . 8
|
| 44 | 43 | imbi2d 230 |
. . . . . . 7
|
| 45 | oveq1 5974 |
. . . . . . . . 9
| |
| 46 | oveq2 5975 |
. . . . . . . . 9
| |
| 47 | 45, 46 | eqeq12d 2222 |
. . . . . . . 8
|
| 48 | 47 | imbi2d 230 |
. . . . . . 7
|
| 49 | rsp2 2558 |
. . . . . . . . 9
| |
| 50 | 49, 16 | syl11 31 |
. . . . . . . 8
|
| 51 | 12 | ovmpt4g 6091 |
. . . . . . . . . . 11
|
| 52 | 51 | 3com12 1210 |
. . . . . . . . . 10
|
| 53 | 17 | ovmpt4g 6091 |
. . . . . . . . . 10
|
| 54 | 52, 53 | eqtr4d 2243 |
. . . . . . . . 9
|
| 55 | 54 | 3expia 1208 |
. . . . . . . 8
|
| 56 | 50, 55 | syld 45 |
. . . . . . 7
|
| 57 | 23, 24, 25, 33, 40, 44, 48, 56 | vtocl2gaf 2845 |
. . . . . 6
|
| 58 | 57 | com12 30 |
. . . . 5
|
| 59 | 58 | 3impib 1204 |
. . . 4
|
| 60 | 59 | mpoeq3dva 6032 |
. . 3
|
| 61 | 22, 60 | eqtr4d 2243 |
. 2
|
| 62 | 2, 1 | cnmpt2nd 14876 |
. . 3
|
| 63 | 2, 1 | cnmpt1st 14875 |
. . 3
|
| 64 | 2, 1, 62, 63, 5 | cnmpt22f 14882 |
. 2
|
| 65 | 61, 64 | eqeltrd 2284 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-coll 4175 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-ral 2491 df-rex 2492 df-reu 2493 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-ov 5970 df-oprab 5971 df-mpo 5972 df-1st 6249 df-2nd 6250 df-map 6760 df-topgen 13207 df-top 14585 df-topon 14598 df-bases 14630 df-cn 14775 df-tx 14840 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |