Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > cnmptcom | Unicode version |
Description: The argument converse of a continuous function is continuous. (Contributed by Mario Carneiro, 6-Jun-2014.) |
Ref | Expression |
---|---|
cnmptcom.3 | TopOn |
cnmptcom.4 | TopOn |
cnmptcom.6 |
Ref | Expression |
---|---|
cnmptcom |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnmptcom.3 | . . . . . . . . 9 TopOn | |
2 | cnmptcom.4 | . . . . . . . . 9 TopOn | |
3 | txtopon 12633 | . . . . . . . . 9 TopOn TopOn TopOn | |
4 | 1, 2, 3 | syl2anc 409 | . . . . . . . 8 TopOn |
5 | cnmptcom.6 | . . . . . . . . . 10 | |
6 | cntop2 12573 | . . . . . . . . . 10 | |
7 | 5, 6 | syl 14 | . . . . . . . . 9 |
8 | toptopon2 12388 | . . . . . . . . 9 TopOn | |
9 | 7, 8 | sylib 121 | . . . . . . . 8 TopOn |
10 | cnf2 12576 | . . . . . . . 8 TopOn TopOn | |
11 | 4, 9, 5, 10 | syl3anc 1220 | . . . . . . 7 |
12 | eqid 2157 | . . . . . . . . 9 | |
13 | 12 | fmpo 6146 | . . . . . . . 8 |
14 | ralcom 2620 | . . . . . . . 8 | |
15 | 13, 14 | bitr3i 185 | . . . . . . 7 |
16 | 11, 15 | sylib 121 | . . . . . 6 |
17 | eqid 2157 | . . . . . . 7 | |
18 | 17 | fmpo 6146 | . . . . . 6 |
19 | 16, 18 | sylib 121 | . . . . 5 |
20 | 19 | ffnd 5319 | . . . 4 |
21 | fnovim 5926 | . . . 4 | |
22 | 20, 21 | syl 14 | . . 3 |
23 | nfcv 2299 | . . . . . . 7 | |
24 | nfcv 2299 | . . . . . . 7 | |
25 | nfcv 2299 | . . . . . . 7 | |
26 | nfv 1508 | . . . . . . . 8 | |
27 | nfcv 2299 | . . . . . . . . . 10 | |
28 | nfmpo2 5886 | . . . . . . . . . 10 | |
29 | 27, 28, 23 | nfov 5848 | . . . . . . . . 9 |
30 | nfmpo1 5885 | . . . . . . . . . 10 | |
31 | 23, 30, 27 | nfov 5848 | . . . . . . . . 9 |
32 | 29, 31 | nfeq 2307 | . . . . . . . 8 |
33 | 26, 32 | nfim 1552 | . . . . . . 7 |
34 | nfv 1508 | . . . . . . . 8 | |
35 | nfmpo1 5885 | . . . . . . . . . 10 | |
36 | 25, 35, 24 | nfov 5848 | . . . . . . . . 9 |
37 | nfmpo2 5886 | . . . . . . . . . 10 | |
38 | 24, 37, 25 | nfov 5848 | . . . . . . . . 9 |
39 | 36, 38 | nfeq 2307 | . . . . . . . 8 |
40 | 34, 39 | nfim 1552 | . . . . . . 7 |
41 | oveq2 5829 | . . . . . . . . 9 | |
42 | oveq1 5828 | . . . . . . . . 9 | |
43 | 41, 42 | eqeq12d 2172 | . . . . . . . 8 |
44 | 43 | imbi2d 229 | . . . . . . 7 |
45 | oveq1 5828 | . . . . . . . . 9 | |
46 | oveq2 5829 | . . . . . . . . 9 | |
47 | 45, 46 | eqeq12d 2172 | . . . . . . . 8 |
48 | 47 | imbi2d 229 | . . . . . . 7 |
49 | rsp2 2507 | . . . . . . . . 9 | |
50 | 49, 16 | syl11 31 | . . . . . . . 8 |
51 | 12 | ovmpt4g 5940 | . . . . . . . . . . 11 |
52 | 51 | 3com12 1189 | . . . . . . . . . 10 |
53 | 17 | ovmpt4g 5940 | . . . . . . . . . 10 |
54 | 52, 53 | eqtr4d 2193 | . . . . . . . . 9 |
55 | 54 | 3expia 1187 | . . . . . . . 8 |
56 | 50, 55 | syld 45 | . . . . . . 7 |
57 | 23, 24, 25, 33, 40, 44, 48, 56 | vtocl2gaf 2779 | . . . . . 6 |
58 | 57 | com12 30 | . . . . 5 |
59 | 58 | 3impib 1183 | . . . 4 |
60 | 59 | mpoeq3dva 5882 | . . 3 |
61 | 22, 60 | eqtr4d 2193 | . 2 |
62 | 2, 1 | cnmpt2nd 12660 | . . 3 |
63 | 2, 1 | cnmpt1st 12659 | . . 3 |
64 | 2, 1, 62, 63, 5 | cnmpt22f 12666 | . 2 |
65 | 61, 64 | eqeltrd 2234 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 w3a 963 wceq 1335 wcel 2128 wral 2435 cuni 3772 cxp 4583 wfn 5164 wf 5165 cfv 5169 (class class class)co 5821 cmpo 5823 ctop 12366 TopOnctopon 12379 ccn 12556 ctx 12623 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-coll 4079 ax-sep 4082 ax-pow 4135 ax-pr 4169 ax-un 4393 ax-setind 4495 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-ral 2440 df-rex 2441 df-reu 2442 df-rab 2444 df-v 2714 df-sbc 2938 df-csb 3032 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-nul 3395 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-iun 3851 df-br 3966 df-opab 4026 df-mpt 4027 df-id 4253 df-xp 4591 df-rel 4592 df-cnv 4593 df-co 4594 df-dm 4595 df-rn 4596 df-res 4597 df-ima 4598 df-iota 5134 df-fun 5171 df-fn 5172 df-f 5173 df-f1 5174 df-fo 5175 df-f1o 5176 df-fv 5177 df-ov 5824 df-oprab 5825 df-mpo 5826 df-1st 6085 df-2nd 6086 df-map 6592 df-topgen 12343 df-top 12367 df-topon 12380 df-bases 12412 df-cn 12559 df-tx 12624 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |