Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > cnmptcom | Unicode version |
Description: The argument converse of a continuous function is continuous. (Contributed by Mario Carneiro, 6-Jun-2014.) |
Ref | Expression |
---|---|
cnmptcom.3 | TopOn |
cnmptcom.4 | TopOn |
cnmptcom.6 |
Ref | Expression |
---|---|
cnmptcom |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnmptcom.3 | . . . . . . . . 9 TopOn | |
2 | cnmptcom.4 | . . . . . . . . 9 TopOn | |
3 | txtopon 12902 | . . . . . . . . 9 TopOn TopOn TopOn | |
4 | 1, 2, 3 | syl2anc 409 | . . . . . . . 8 TopOn |
5 | cnmptcom.6 | . . . . . . . . . 10 | |
6 | cntop2 12842 | . . . . . . . . . 10 | |
7 | 5, 6 | syl 14 | . . . . . . . . 9 |
8 | toptopon2 12657 | . . . . . . . . 9 TopOn | |
9 | 7, 8 | sylib 121 | . . . . . . . 8 TopOn |
10 | cnf2 12845 | . . . . . . . 8 TopOn TopOn | |
11 | 4, 9, 5, 10 | syl3anc 1228 | . . . . . . 7 |
12 | eqid 2165 | . . . . . . . . 9 | |
13 | 12 | fmpo 6169 | . . . . . . . 8 |
14 | ralcom 2629 | . . . . . . . 8 | |
15 | 13, 14 | bitr3i 185 | . . . . . . 7 |
16 | 11, 15 | sylib 121 | . . . . . 6 |
17 | eqid 2165 | . . . . . . 7 | |
18 | 17 | fmpo 6169 | . . . . . 6 |
19 | 16, 18 | sylib 121 | . . . . 5 |
20 | 19 | ffnd 5338 | . . . 4 |
21 | fnovim 5950 | . . . 4 | |
22 | 20, 21 | syl 14 | . . 3 |
23 | nfcv 2308 | . . . . . . 7 | |
24 | nfcv 2308 | . . . . . . 7 | |
25 | nfcv 2308 | . . . . . . 7 | |
26 | nfv 1516 | . . . . . . . 8 | |
27 | nfcv 2308 | . . . . . . . . . 10 | |
28 | nfmpo2 5910 | . . . . . . . . . 10 | |
29 | 27, 28, 23 | nfov 5872 | . . . . . . . . 9 |
30 | nfmpo1 5909 | . . . . . . . . . 10 | |
31 | 23, 30, 27 | nfov 5872 | . . . . . . . . 9 |
32 | 29, 31 | nfeq 2316 | . . . . . . . 8 |
33 | 26, 32 | nfim 1560 | . . . . . . 7 |
34 | nfv 1516 | . . . . . . . 8 | |
35 | nfmpo1 5909 | . . . . . . . . . 10 | |
36 | 25, 35, 24 | nfov 5872 | . . . . . . . . 9 |
37 | nfmpo2 5910 | . . . . . . . . . 10 | |
38 | 24, 37, 25 | nfov 5872 | . . . . . . . . 9 |
39 | 36, 38 | nfeq 2316 | . . . . . . . 8 |
40 | 34, 39 | nfim 1560 | . . . . . . 7 |
41 | oveq2 5850 | . . . . . . . . 9 | |
42 | oveq1 5849 | . . . . . . . . 9 | |
43 | 41, 42 | eqeq12d 2180 | . . . . . . . 8 |
44 | 43 | imbi2d 229 | . . . . . . 7 |
45 | oveq1 5849 | . . . . . . . . 9 | |
46 | oveq2 5850 | . . . . . . . . 9 | |
47 | 45, 46 | eqeq12d 2180 | . . . . . . . 8 |
48 | 47 | imbi2d 229 | . . . . . . 7 |
49 | rsp2 2516 | . . . . . . . . 9 | |
50 | 49, 16 | syl11 31 | . . . . . . . 8 |
51 | 12 | ovmpt4g 5964 | . . . . . . . . . . 11 |
52 | 51 | 3com12 1197 | . . . . . . . . . 10 |
53 | 17 | ovmpt4g 5964 | . . . . . . . . . 10 |
54 | 52, 53 | eqtr4d 2201 | . . . . . . . . 9 |
55 | 54 | 3expia 1195 | . . . . . . . 8 |
56 | 50, 55 | syld 45 | . . . . . . 7 |
57 | 23, 24, 25, 33, 40, 44, 48, 56 | vtocl2gaf 2793 | . . . . . 6 |
58 | 57 | com12 30 | . . . . 5 |
59 | 58 | 3impib 1191 | . . . 4 |
60 | 59 | mpoeq3dva 5906 | . . 3 |
61 | 22, 60 | eqtr4d 2201 | . 2 |
62 | 2, 1 | cnmpt2nd 12929 | . . 3 |
63 | 2, 1 | cnmpt1st 12928 | . . 3 |
64 | 2, 1, 62, 63, 5 | cnmpt22f 12935 | . 2 |
65 | 61, 64 | eqeltrd 2243 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 w3a 968 wceq 1343 wcel 2136 wral 2444 cuni 3789 cxp 4602 wfn 5183 wf 5184 cfv 5188 (class class class)co 5842 cmpo 5844 ctop 12635 TopOnctopon 12648 ccn 12825 ctx 12892 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 df-map 6616 df-topgen 12577 df-top 12636 df-topon 12649 df-bases 12681 df-cn 12828 df-tx 12893 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |