ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnmpt2t Unicode version

Theorem cnmpt2t 14613
Description: The composition of continuous functions is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.)
Hypotheses
Ref Expression
cnmpt21.j  |-  ( ph  ->  J  e.  (TopOn `  X ) )
cnmpt21.k  |-  ( ph  ->  K  e.  (TopOn `  Y ) )
cnmpt21.a  |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |->  A )  e.  ( ( J  tX  K
)  Cn  L ) )
cnmpt2t.b  |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |->  B )  e.  ( ( J  tX  K
)  Cn  M ) )
Assertion
Ref Expression
cnmpt2t  |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |-> 
<. A ,  B >. )  e.  ( ( J 
tX  K )  Cn  ( L  tX  M
) ) )
Distinct variable groups:    x, y, L    ph, x, y    x, X, y    x, M, y   
x, Y, y
Allowed substitution hints:    A( x, y)    B( x, y)    J( x, y)    K( x, y)

Proof of Theorem cnmpt2t
Dummy variables  v  u  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 5561 . . . . . . 7  |-  ( z  =  <. u ,  v
>.  ->  ( ( x  e.  X ,  y  e.  Y  |->  A ) `
 z )  =  ( ( x  e.  X ,  y  e.  Y  |->  A ) `  <. u ,  v >.
) )
2 df-ov 5928 . . . . . . 7  |-  ( u ( x  e.  X ,  y  e.  Y  |->  A ) v )  =  ( ( x  e.  X ,  y  e.  Y  |->  A ) `
 <. u ,  v
>. )
31, 2eqtr4di 2247 . . . . . 6  |-  ( z  =  <. u ,  v
>.  ->  ( ( x  e.  X ,  y  e.  Y  |->  A ) `
 z )  =  ( u ( x  e.  X ,  y  e.  Y  |->  A ) v ) )
4 fveq2 5561 . . . . . . 7  |-  ( z  =  <. u ,  v
>.  ->  ( ( x  e.  X ,  y  e.  Y  |->  B ) `
 z )  =  ( ( x  e.  X ,  y  e.  Y  |->  B ) `  <. u ,  v >.
) )
5 df-ov 5928 . . . . . . 7  |-  ( u ( x  e.  X ,  y  e.  Y  |->  B ) v )  =  ( ( x  e.  X ,  y  e.  Y  |->  B ) `
 <. u ,  v
>. )
64, 5eqtr4di 2247 . . . . . 6  |-  ( z  =  <. u ,  v
>.  ->  ( ( x  e.  X ,  y  e.  Y  |->  B ) `
 z )  =  ( u ( x  e.  X ,  y  e.  Y  |->  B ) v ) )
73, 6opeq12d 3817 . . . . 5  |-  ( z  =  <. u ,  v
>.  ->  <. ( ( x  e.  X ,  y  e.  Y  |->  A ) `
 z ) ,  ( ( x  e.  X ,  y  e.  Y  |->  B ) `  z ) >.  =  <. ( u ( x  e.  X ,  y  e.  Y  |->  A ) v ) ,  ( u ( x  e.  X ,  y  e.  Y  |->  B ) v )
>. )
87mpompt 6018 . . . 4  |-  ( z  e.  ( X  X.  Y )  |->  <. (
( x  e.  X ,  y  e.  Y  |->  A ) `  z
) ,  ( ( x  e.  X , 
y  e.  Y  |->  B ) `  z )
>. )  =  (
u  e.  X , 
v  e.  Y  |->  <.
( u ( x  e.  X ,  y  e.  Y  |->  A ) v ) ,  ( u ( x  e.  X ,  y  e.  Y  |->  B ) v ) >. )
9 nfcv 2339 . . . . . . 7  |-  F/_ x u
10 nfmpo1 5993 . . . . . . 7  |-  F/_ x
( x  e.  X ,  y  e.  Y  |->  A )
11 nfcv 2339 . . . . . . 7  |-  F/_ x
v
129, 10, 11nfov 5955 . . . . . 6  |-  F/_ x
( u ( x  e.  X ,  y  e.  Y  |->  A ) v )
13 nfmpo1 5993 . . . . . . 7  |-  F/_ x
( x  e.  X ,  y  e.  Y  |->  B )
149, 13, 11nfov 5955 . . . . . 6  |-  F/_ x
( u ( x  e.  X ,  y  e.  Y  |->  B ) v )
1512, 14nfop 3825 . . . . 5  |-  F/_ x <. ( u ( x  e.  X ,  y  e.  Y  |->  A ) v ) ,  ( u ( x  e.  X ,  y  e.  Y  |->  B ) v ) >.
16 nfcv 2339 . . . . . . 7  |-  F/_ y
u
17 nfmpo2 5994 . . . . . . 7  |-  F/_ y
( x  e.  X ,  y  e.  Y  |->  A )
18 nfcv 2339 . . . . . . 7  |-  F/_ y
v
1916, 17, 18nfov 5955 . . . . . 6  |-  F/_ y
( u ( x  e.  X ,  y  e.  Y  |->  A ) v )
20 nfmpo2 5994 . . . . . . 7  |-  F/_ y
( x  e.  X ,  y  e.  Y  |->  B )
2116, 20, 18nfov 5955 . . . . . 6  |-  F/_ y
( u ( x  e.  X ,  y  e.  Y  |->  B ) v )
2219, 21nfop 3825 . . . . 5  |-  F/_ y <. ( u ( x  e.  X ,  y  e.  Y  |->  A ) v ) ,  ( u ( x  e.  X ,  y  e.  Y  |->  B ) v ) >.
23 nfcv 2339 . . . . 5  |-  F/_ u <. ( x ( x  e.  X ,  y  e.  Y  |->  A ) y ) ,  ( x ( x  e.  X ,  y  e.  Y  |->  B ) y ) >.
24 nfcv 2339 . . . . 5  |-  F/_ v <. ( x ( x  e.  X ,  y  e.  Y  |->  A ) y ) ,  ( x ( x  e.  X ,  y  e.  Y  |->  B ) y ) >.
25 oveq12 5934 . . . . . 6  |-  ( ( u  =  x  /\  v  =  y )  ->  ( u ( x  e.  X ,  y  e.  Y  |->  A ) v )  =  ( x ( x  e.  X ,  y  e.  Y  |->  A ) y ) )
26 oveq12 5934 . . . . . 6  |-  ( ( u  =  x  /\  v  =  y )  ->  ( u ( x  e.  X ,  y  e.  Y  |->  B ) v )  =  ( x ( x  e.  X ,  y  e.  Y  |->  B ) y ) )
2725, 26opeq12d 3817 . . . . 5  |-  ( ( u  =  x  /\  v  =  y )  -> 
<. ( u ( x  e.  X ,  y  e.  Y  |->  A ) v ) ,  ( u ( x  e.  X ,  y  e.  Y  |->  B ) v ) >.  =  <. ( x ( x  e.  X ,  y  e.  Y  |->  A ) y ) ,  ( x ( x  e.  X ,  y  e.  Y  |->  B ) y )
>. )
2815, 22, 23, 24, 27cbvmpo 6005 . . . 4  |-  ( u  e.  X ,  v  e.  Y  |->  <. (
u ( x  e.  X ,  y  e.  Y  |->  A ) v ) ,  ( u ( x  e.  X ,  y  e.  Y  |->  B ) v )
>. )  =  (
x  e.  X , 
y  e.  Y  |->  <.
( x ( x  e.  X ,  y  e.  Y  |->  A ) y ) ,  ( x ( x  e.  X ,  y  e.  Y  |->  B ) y ) >. )
298, 28eqtri 2217 . . 3  |-  ( z  e.  ( X  X.  Y )  |->  <. (
( x  e.  X ,  y  e.  Y  |->  A ) `  z
) ,  ( ( x  e.  X , 
y  e.  Y  |->  B ) `  z )
>. )  =  (
x  e.  X , 
y  e.  Y  |->  <.
( x ( x  e.  X ,  y  e.  Y  |->  A ) y ) ,  ( x ( x  e.  X ,  y  e.  Y  |->  B ) y ) >. )
30 cnmpt21.j . . . . 5  |-  ( ph  ->  J  e.  (TopOn `  X ) )
31 cnmpt21.k . . . . 5  |-  ( ph  ->  K  e.  (TopOn `  Y ) )
32 txtopon 14582 . . . . 5  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( J  tX  K )  e.  (TopOn `  ( X  X.  Y
) ) )
3330, 31, 32syl2anc 411 . . . 4  |-  ( ph  ->  ( J  tX  K
)  e.  (TopOn `  ( X  X.  Y
) ) )
34 toponuni 14335 . . . 4  |-  ( ( J  tX  K )  e.  (TopOn `  ( X  X.  Y ) )  ->  ( X  X.  Y )  =  U. ( J  tX  K ) )
35 mpteq1 4118 . . . 4  |-  ( ( X  X.  Y )  =  U. ( J 
tX  K )  -> 
( z  e.  ( X  X.  Y ) 
|->  <. ( ( x  e.  X ,  y  e.  Y  |->  A ) `
 z ) ,  ( ( x  e.  X ,  y  e.  Y  |->  B ) `  z ) >. )  =  ( z  e. 
U. ( J  tX  K )  |->  <. (
( x  e.  X ,  y  e.  Y  |->  A ) `  z
) ,  ( ( x  e.  X , 
y  e.  Y  |->  B ) `  z )
>. ) )
3633, 34, 353syl 17 . . 3  |-  ( ph  ->  ( z  e.  ( X  X.  Y ) 
|->  <. ( ( x  e.  X ,  y  e.  Y  |->  A ) `
 z ) ,  ( ( x  e.  X ,  y  e.  Y  |->  B ) `  z ) >. )  =  ( z  e. 
U. ( J  tX  K )  |->  <. (
( x  e.  X ,  y  e.  Y  |->  A ) `  z
) ,  ( ( x  e.  X , 
y  e.  Y  |->  B ) `  z )
>. ) )
37 simp2 1000 . . . . . 6  |-  ( (
ph  /\  x  e.  X  /\  y  e.  Y
)  ->  x  e.  X )
38 simp3 1001 . . . . . 6  |-  ( (
ph  /\  x  e.  X  /\  y  e.  Y
)  ->  y  e.  Y )
39 cnmpt21.a . . . . . . . . . . . 12  |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |->  A )  e.  ( ( J  tX  K
)  Cn  L ) )
40 cntop2 14522 . . . . . . . . . . . 12  |-  ( ( x  e.  X , 
y  e.  Y  |->  A )  e.  ( ( J  tX  K )  Cn  L )  ->  L  e.  Top )
4139, 40syl 14 . . . . . . . . . . 11  |-  ( ph  ->  L  e.  Top )
42 toptopon2 14339 . . . . . . . . . . 11  |-  ( L  e.  Top  <->  L  e.  (TopOn `  U. L ) )
4341, 42sylib 122 . . . . . . . . . 10  |-  ( ph  ->  L  e.  (TopOn `  U. L ) )
44 cnf2 14525 . . . . . . . . . 10  |-  ( ( ( J  tX  K
)  e.  (TopOn `  ( X  X.  Y
) )  /\  L  e.  (TopOn `  U. L )  /\  ( x  e.  X ,  y  e.  Y  |->  A )  e.  ( ( J  tX  K )  Cn  L
) )  ->  (
x  e.  X , 
y  e.  Y  |->  A ) : ( X  X.  Y ) --> U. L )
4533, 43, 39, 44syl3anc 1249 . . . . . . . . 9  |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |->  A ) : ( X  X.  Y ) --> U. L )
46 eqid 2196 . . . . . . . . . 10  |-  ( x  e.  X ,  y  e.  Y  |->  A )  =  ( x  e.  X ,  y  e.  Y  |->  A )
4746fmpo 6268 . . . . . . . . 9  |-  ( A. x  e.  X  A. y  e.  Y  A  e.  U. L  <->  ( x  e.  X ,  y  e.  Y  |->  A ) : ( X  X.  Y
) --> U. L )
4845, 47sylibr 134 . . . . . . . 8  |-  ( ph  ->  A. x  e.  X  A. y  e.  Y  A  e.  U. L )
49 rsp2 2547 . . . . . . . 8  |-  ( A. x  e.  X  A. y  e.  Y  A  e.  U. L  ->  (
( x  e.  X  /\  y  e.  Y
)  ->  A  e.  U. L ) )
5048, 49syl 14 . . . . . . 7  |-  ( ph  ->  ( ( x  e.  X  /\  y  e.  Y )  ->  A  e.  U. L ) )
51503impib 1203 . . . . . 6  |-  ( (
ph  /\  x  e.  X  /\  y  e.  Y
)  ->  A  e.  U. L )
5246ovmpt4g 6049 . . . . . 6  |-  ( ( x  e.  X  /\  y  e.  Y  /\  A  e.  U. L )  ->  ( x ( x  e.  X , 
y  e.  Y  |->  A ) y )  =  A )
5337, 38, 51, 52syl3anc 1249 . . . . 5  |-  ( (
ph  /\  x  e.  X  /\  y  e.  Y
)  ->  ( x
( x  e.  X ,  y  e.  Y  |->  A ) y )  =  A )
54 cnmpt2t.b . . . . . . . . . . . 12  |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |->  B )  e.  ( ( J  tX  K
)  Cn  M ) )
55 cntop2 14522 . . . . . . . . . . . 12  |-  ( ( x  e.  X , 
y  e.  Y  |->  B )  e.  ( ( J  tX  K )  Cn  M )  ->  M  e.  Top )
5654, 55syl 14 . . . . . . . . . . 11  |-  ( ph  ->  M  e.  Top )
57 toptopon2 14339 . . . . . . . . . . 11  |-  ( M  e.  Top  <->  M  e.  (TopOn `  U. M ) )
5856, 57sylib 122 . . . . . . . . . 10  |-  ( ph  ->  M  e.  (TopOn `  U. M ) )
59 cnf2 14525 . . . . . . . . . 10  |-  ( ( ( J  tX  K
)  e.  (TopOn `  ( X  X.  Y
) )  /\  M  e.  (TopOn `  U. M )  /\  ( x  e.  X ,  y  e.  Y  |->  B )  e.  ( ( J  tX  K )  Cn  M
) )  ->  (
x  e.  X , 
y  e.  Y  |->  B ) : ( X  X.  Y ) --> U. M )
6033, 58, 54, 59syl3anc 1249 . . . . . . . . 9  |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |->  B ) : ( X  X.  Y ) --> U. M )
61 eqid 2196 . . . . . . . . . 10  |-  ( x  e.  X ,  y  e.  Y  |->  B )  =  ( x  e.  X ,  y  e.  Y  |->  B )
6261fmpo 6268 . . . . . . . . 9  |-  ( A. x  e.  X  A. y  e.  Y  B  e.  U. M  <->  ( x  e.  X ,  y  e.  Y  |->  B ) : ( X  X.  Y
) --> U. M )
6360, 62sylibr 134 . . . . . . . 8  |-  ( ph  ->  A. x  e.  X  A. y  e.  Y  B  e.  U. M )
64 rsp2 2547 . . . . . . . 8  |-  ( A. x  e.  X  A. y  e.  Y  B  e.  U. M  ->  (
( x  e.  X  /\  y  e.  Y
)  ->  B  e.  U. M ) )
6563, 64syl 14 . . . . . . 7  |-  ( ph  ->  ( ( x  e.  X  /\  y  e.  Y )  ->  B  e.  U. M ) )
66653impib 1203 . . . . . 6  |-  ( (
ph  /\  x  e.  X  /\  y  e.  Y
)  ->  B  e.  U. M )
6761ovmpt4g 6049 . . . . . 6  |-  ( ( x  e.  X  /\  y  e.  Y  /\  B  e.  U. M )  ->  ( x ( x  e.  X , 
y  e.  Y  |->  B ) y )  =  B )
6837, 38, 66, 67syl3anc 1249 . . . . 5  |-  ( (
ph  /\  x  e.  X  /\  y  e.  Y
)  ->  ( x
( x  e.  X ,  y  e.  Y  |->  B ) y )  =  B )
6953, 68opeq12d 3817 . . . 4  |-  ( (
ph  /\  x  e.  X  /\  y  e.  Y
)  ->  <. ( x ( x  e.  X ,  y  e.  Y  |->  A ) y ) ,  ( x ( x  e.  X , 
y  e.  Y  |->  B ) y ) >.  =  <. A ,  B >. )
7069mpoeq3dva 5990 . . 3  |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |-> 
<. ( x ( x  e.  X ,  y  e.  Y  |->  A ) y ) ,  ( x ( x  e.  X ,  y  e.  Y  |->  B ) y ) >. )  =  ( x  e.  X , 
y  e.  Y  |->  <. A ,  B >. ) )
7129, 36, 703eqtr3a 2253 . 2  |-  ( ph  ->  ( z  e.  U. ( J  tX  K ) 
|->  <. ( ( x  e.  X ,  y  e.  Y  |->  A ) `
 z ) ,  ( ( x  e.  X ,  y  e.  Y  |->  B ) `  z ) >. )  =  ( x  e.  X ,  y  e.  Y  |->  <. A ,  B >. ) )
72 eqid 2196 . . . 4  |-  U. ( J  tX  K )  = 
U. ( J  tX  K )
73 eqid 2196 . . . 4  |-  ( z  e.  U. ( J 
tX  K )  |->  <.
( ( x  e.  X ,  y  e.  Y  |->  A ) `  z ) ,  ( ( x  e.  X ,  y  e.  Y  |->  B ) `  z
) >. )  =  ( z  e.  U. ( J  tX  K )  |->  <.
( ( x  e.  X ,  y  e.  Y  |->  A ) `  z ) ,  ( ( x  e.  X ,  y  e.  Y  |->  B ) `  z
) >. )
7472, 73txcnmpt 14593 . . 3  |-  ( ( ( x  e.  X ,  y  e.  Y  |->  A )  e.  ( ( J  tX  K
)  Cn  L )  /\  ( x  e.  X ,  y  e.  Y  |->  B )  e.  ( ( J  tX  K )  Cn  M
) )  ->  (
z  e.  U. ( J  tX  K )  |->  <.
( ( x  e.  X ,  y  e.  Y  |->  A ) `  z ) ,  ( ( x  e.  X ,  y  e.  Y  |->  B ) `  z
) >. )  e.  ( ( J  tX  K
)  Cn  ( L 
tX  M ) ) )
7539, 54, 74syl2anc 411 . 2  |-  ( ph  ->  ( z  e.  U. ( J  tX  K ) 
|->  <. ( ( x  e.  X ,  y  e.  Y  |->  A ) `
 z ) ,  ( ( x  e.  X ,  y  e.  Y  |->  B ) `  z ) >. )  e.  ( ( J  tX  K )  Cn  ( L  tX  M ) ) )
7671, 75eqeltrrd 2274 1  |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |-> 
<. A ,  B >. )  e.  ( ( J 
tX  K )  Cn  ( L  tX  M
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980    = wceq 1364    e. wcel 2167   A.wral 2475   <.cop 3626   U.cuni 3840    |-> cmpt 4095    X. cxp 4662   -->wf 5255   ` cfv 5259  (class class class)co 5925    e. cmpo 5927   Topctop 14317  TopOnctopon 14330    Cn ccn 14505    tX ctx 14572
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-map 6718  df-topgen 12962  df-top 14318  df-topon 14331  df-bases 14363  df-cn 14508  df-tx 14573
This theorem is referenced by:  cnmpt22  14614  txhmeo  14639  txswaphmeo  14641
  Copyright terms: Public domain W3C validator