ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cmncom Unicode version

Theorem cmncom 13638
Description: A commutative monoid is commutative. (Contributed by Mario Carneiro, 6-Jan-2015.)
Hypotheses
Ref Expression
ablcom.b  |-  B  =  ( Base `  G
)
ablcom.p  |-  .+  =  ( +g  `  G )
Assertion
Ref Expression
cmncom  |-  ( ( G  e. CMnd  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .+  Y )  =  ( Y  .+  X
) )

Proof of Theorem cmncom
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ablcom.b . . . . . 6  |-  B  =  ( Base `  G
)
2 ablcom.p . . . . . 6  |-  .+  =  ( +g  `  G )
31, 2iscmn 13629 . . . . 5  |-  ( G  e. CMnd 
<->  ( G  e.  Mnd  /\ 
A. x  e.  B  A. y  e.  B  ( x  .+  y )  =  ( y  .+  x ) ) )
43simprbi 275 . . . 4  |-  ( G  e. CMnd  ->  A. x  e.  B  A. y  e.  B  ( x  .+  y )  =  ( y  .+  x ) )
5 rsp2 2556 . . . . 5  |-  ( A. x  e.  B  A. y  e.  B  (
x  .+  y )  =  ( y  .+  x )  ->  (
( x  e.  B  /\  y  e.  B
)  ->  ( x  .+  y )  =  ( y  .+  x ) ) )
65imp 124 . . . 4  |-  ( ( A. x  e.  B  A. y  e.  B  ( x  .+  y )  =  ( y  .+  x )  /\  (
x  e.  B  /\  y  e.  B )
)  ->  ( x  .+  y )  =  ( y  .+  x ) )
74, 6sylan 283 . . 3  |-  ( ( G  e. CMnd  /\  (
x  e.  B  /\  y  e.  B )
)  ->  ( x  .+  y )  =  ( y  .+  x ) )
87caovcomg 6102 . 2  |-  ( ( G  e. CMnd  /\  ( X  e.  B  /\  Y  e.  B )
)  ->  ( X  .+  Y )  =  ( Y  .+  X ) )
983impb 1202 1  |-  ( ( G  e. CMnd  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .+  Y )  =  ( Y  .+  X
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 981    = wceq 1373    e. wcel 2176   A.wral 2484   ` cfv 5271  (class class class)co 5944   Basecbs 12832   +g cplusg 12909   Mndcmnd 13248  CMndccmn 13620
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-rab 2493  df-v 2774  df-un 3170  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4045  df-iota 5232  df-fv 5279  df-ov 5947  df-cmn 13622
This theorem is referenced by:  ablcom  13639  cmn32  13640  cmn4  13641  cmn12  13642  rinvmod  13645  ghmcmn  13663  subcmnd  13669  gsumfzreidx  13673  gsumfzmptfidmadd  13675  srgcom  13745  crngcom  13776
  Copyright terms: Public domain W3C validator