| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cmncom | Unicode version | ||
| Description: A commutative monoid is commutative. (Contributed by Mario Carneiro, 6-Jan-2015.) |
| Ref | Expression |
|---|---|
| ablcom.b |
|
| ablcom.p |
|
| Ref | Expression |
|---|---|
| cmncom |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ablcom.b |
. . . . . 6
| |
| 2 | ablcom.p |
. . . . . 6
| |
| 3 | 1, 2 | iscmn 13629 |
. . . . 5
|
| 4 | 3 | simprbi 275 |
. . . 4
|
| 5 | rsp2 2556 |
. . . . 5
| |
| 6 | 5 | imp 124 |
. . . 4
|
| 7 | 4, 6 | sylan 283 |
. . 3
|
| 8 | 7 | caovcomg 6102 |
. 2
|
| 9 | 8 | 3impb 1202 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-rab 2493 df-v 2774 df-un 3170 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4045 df-iota 5232 df-fv 5279 df-ov 5947 df-cmn 13622 |
| This theorem is referenced by: ablcom 13639 cmn32 13640 cmn4 13641 cmn12 13642 rinvmod 13645 ghmcmn 13663 subcmnd 13669 gsumfzreidx 13673 gsumfzmptfidmadd 13675 srgcom 13745 crngcom 13776 |
| Copyright terms: Public domain | W3C validator |