ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cmncom Unicode version

Theorem cmncom 13432
Description: A commutative monoid is commutative. (Contributed by Mario Carneiro, 6-Jan-2015.)
Hypotheses
Ref Expression
ablcom.b  |-  B  =  ( Base `  G
)
ablcom.p  |-  .+  =  ( +g  `  G )
Assertion
Ref Expression
cmncom  |-  ( ( G  e. CMnd  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .+  Y )  =  ( Y  .+  X
) )

Proof of Theorem cmncom
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ablcom.b . . . . . 6  |-  B  =  ( Base `  G
)
2 ablcom.p . . . . . 6  |-  .+  =  ( +g  `  G )
31, 2iscmn 13423 . . . . 5  |-  ( G  e. CMnd 
<->  ( G  e.  Mnd  /\ 
A. x  e.  B  A. y  e.  B  ( x  .+  y )  =  ( y  .+  x ) ) )
43simprbi 275 . . . 4  |-  ( G  e. CMnd  ->  A. x  e.  B  A. y  e.  B  ( x  .+  y )  =  ( y  .+  x ) )
5 rsp2 2547 . . . . 5  |-  ( A. x  e.  B  A. y  e.  B  (
x  .+  y )  =  ( y  .+  x )  ->  (
( x  e.  B  /\  y  e.  B
)  ->  ( x  .+  y )  =  ( y  .+  x ) ) )
65imp 124 . . . 4  |-  ( ( A. x  e.  B  A. y  e.  B  ( x  .+  y )  =  ( y  .+  x )  /\  (
x  e.  B  /\  y  e.  B )
)  ->  ( x  .+  y )  =  ( y  .+  x ) )
74, 6sylan 283 . . 3  |-  ( ( G  e. CMnd  /\  (
x  e.  B  /\  y  e.  B )
)  ->  ( x  .+  y )  =  ( y  .+  x ) )
87caovcomg 6079 . 2  |-  ( ( G  e. CMnd  /\  ( X  e.  B  /\  Y  e.  B )
)  ->  ( X  .+  Y )  =  ( Y  .+  X ) )
983impb 1201 1  |-  ( ( G  e. CMnd  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .+  Y )  =  ( Y  .+  X
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980    = wceq 1364    e. wcel 2167   A.wral 2475   ` cfv 5258  (class class class)co 5922   Basecbs 12678   +g cplusg 12755   Mndcmnd 13057  CMndccmn 13414
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-un 3161  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-iota 5219  df-fv 5266  df-ov 5925  df-cmn 13416
This theorem is referenced by:  ablcom  13433  cmn32  13434  cmn4  13435  cmn12  13436  rinvmod  13439  ghmcmn  13457  subcmnd  13463  gsumfzreidx  13467  gsumfzmptfidmadd  13469  srgcom  13539  crngcom  13570
  Copyright terms: Public domain W3C validator